關(guān)于函數(shù)f(x)=xarcsin2x有下列命題:①f(x)的定義域是R;②f(x)是偶函數(shù);③f(x)在定義域內(nèi)是增函數(shù);④f(x)的最大值是,最小值是0.其中正確的命題是    .(寫出你所認(rèn)為正確的所有命題序號)
【答案】分析:對于①-1≤2x≤1,∴函數(shù)的定義域不可能為R;對于②兩個奇函數(shù)乘積偶函數(shù);對于③由于是偶函數(shù),則f(x)在定義域內(nèi)不可能單調(diào);對于④左邊單減,右邊單增,故可得結(jié)論.
解答:解:對于①-1≤2x≤1,∴函數(shù)的定義域不可能為R,故①錯誤;
對于②f(-x)=f(x),兩個奇函數(shù)乘積偶函數(shù),∴為偶函數(shù),故②正確;
對于③由于是偶函數(shù),則f(x)在定義域內(nèi)不可能單調(diào),故③錯誤;
對于④左邊單減,右邊單增,∴f(x)的最大值是,最小值是0,故④正確.
故正確答案為②④
點評:本題的考點是反三角函數(shù)的運用,主要考查反三角函數(shù)的性質(zhì),定義域,單調(diào)性,奇偶性,最值等,有一定的綜合性
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個命題:
①函數(shù)y=f(x)的定義域為R,值域為[0,
1
2
]
;
②函數(shù)y=f(x)的圖象關(guān)于直線x=
k
2
(k∈Z)對稱;
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
④函數(shù)y=f(x)在[-
1
2
1
2
]
上是增函數(shù).
其中正確的命題的序號是( 。
A、①B、②③C、①②③D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m +
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(-
1
2
1
2
]
;
②點(k,0)是y=f(x)的圖象的對稱中心,其中k∈Z;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(-
1
2
,
3
2
]
上是增函數(shù).
則上述命題中真命題的序號是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為R,則下列命題中:?
①若f(x-2)是偶函數(shù),則函數(shù)f(x)的圖象關(guān)于直線x=2對稱;?②若f(x+2)=-f(x-2),則函數(shù)f(x)的圖象關(guān)于原點對稱;?③函數(shù)y=f(2+x)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對稱;?④函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對稱.?
其中正確的命題序號是
.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案