已知點P(a,b),先對它作矩陣M=
1
2  
-
3
2
3
2
  
1
2
對應(yīng)的變換,再作N=
2  0
0  2
對應(yīng)的變換,得到的點的坐標(biāo)為(8,4
3
),求實數(shù)a,b的值.
考點:幾種特殊的矩陣變換
專題:選作題,矩陣和變換
分析:利用矩陣的乘法,求出MN,(NM)-1,利用變換得到的點的坐標(biāo)為(8,4
3
),即可求實數(shù)a,b的值.
解答: 解:依題意,NM=
2  0
0  2
1
2  
-
3
2
3
2
  
1
2
=
1-
3
3
1
,…(4分)
由逆矩陣公式得,(NM)-1=
1
4
3
4
-
3
4
1
4
,…(8分)
所以
1
4
3
4
-
3
4
1
4
8
4
3
=
5
-
3
,即有a=5,b=-
3
.            …(10分)
點評:本題主要考查了矩陣變換的性質(zhì),同時考查了計算能力和運算求解的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知|
a
|+2|
b
|=3,
a
b
的夾角為60°,
c
=5
a
+3
b
,
d
=3
a
+k
b
,當(dāng)實數(shù)k為何值時
c
d

(2)不共線向量
a
,
b
的夾角為小于120°的角,且|
a
|=1,|
b
|=2,已知向量
c
=
a
+2
b
,求|
c
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)A(-1,0),B(1,0),C(m,n),且△ABC的周長為2
2
+2.
(1)求證:點C在一個橢圓上運動,并求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l:mx+2ny-2=0.
①判斷直線l與(1)中的橢圓的位置關(guān)系,并說明理由;
②過點A作直線l的垂線,垂足為H.證明:點H在定圓上,并求出定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從0,1,2,3,4,5,6這7個數(shù)字中選出4個不同的數(shù)字組成四位數(shù).
(1)一共可以組成多少個四位數(shù);
(2)一共可以組成多少個比1300大的四位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形的邊長為a,求陰影部分的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
,
e2
是兩個不共線向量,已知
AB
=2
e1
+k
e2
,
CB
=
e1
+3
e2
,
CD
=2
e1
-
e2

(1)若A,B,D三點共線,求實數(shù)k的值;
(2)若
e1
,
e2
為單位向量,
e1
e2
的夾角是
2
3
π,且
AB
CB
,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人各進(jìn)行一次射擊,如果兩人擊中目標(biāo)的概率都是0.8,計算:
(1)兩人都擊中目標(biāo)的概率;
(2)兩人中恰有一人擊中目標(biāo)的概率;
(3)至少有一人擊中目標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|ax2-2x+2=0,x∈R}至多有一個元素,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD的底面ABCD是正方形,且頂點P在底面ABCD的射影為底面的中心,若|AB|=a,棱錐體積為
6
6
a3
,則側(cè)棱AP與底面ABCD所成的角是
 

查看答案和解析>>

同步練習(xí)冊答案