13.下列函數(shù)中,在區(qū)間[0,$\frac{π}{2}$]上為減函數(shù)的是( 。
A.y=cos xB.y=sin xC.y=tan xD.y=sin(x-$\frac{π}{3}$)

分析 根據(jù)題意,判斷選項(xiàng)中的函數(shù)是否滿足在區(qū)間[0,$\frac{π}{2}$]上為減函數(shù)即可.

解答 解:對于A,函數(shù)y=cosx在區(qū)間[0,$\frac{π}{2}$]上是減函數(shù),滿足題意;
對于B,函數(shù)y=sinx在區(qū)間[0,$\frac{π}{2}$]上是增函數(shù),不滿足題意;
對于C,函數(shù)y=tanx在區(qū)間[0,$\frac{π}{2}$)上是增函數(shù),且在x=$\frac{π}{2}$時無意義,不滿足題意;
對于D,函數(shù)y=sin(x-$\frac{π}{3}$)在區(qū)間[0,$\frac{π}{2}$]上是增函數(shù),不滿足題意.
故選:A.

點(diǎn)評 本題考查了三角函數(shù)在定區(qū)間上的單調(diào)性問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)x=-2與x=4是函數(shù)f(x)=x3+ax2+bx的兩個極值點(diǎn).
(Ⅰ)求常數(shù)a,b的值;
(Ⅱ)求函數(shù)f(x)的極大值與極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知x∈(1,+∞),函數(shù)f(x)=ex+2ax(a∈R),函數(shù)g(x)=|$\frac{e}{x}$-lnx|+lnx,其中e為自然對數(shù)的底數(shù).
(1)若a=-$\frac{{e}^{2}}{2}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)a∈(2,+∞)時,f′(x-1)>g(x)+a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)m,n∈R,若直線l:2mx+ny-1=0與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且坐標(biāo)原點(diǎn)O到直線l的距離為$\sqrt{3}$,則△AOB的面積S的最小值為( 。
A.$\frac{1}{2}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)=x3-ax在(-∞,+∞) 是增函數(shù),則a的取值范圍是(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ為120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,求:
(1)$\overrightarrow{a}$•$\overrightarrow$;  
(2)($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow$); 
(3)|$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.①歸納推理是由一般到一般的推理;②歸納推理是由部分到整體的推理;
③演繹推理是由一般到特殊的推理;④類比推理是由特殊到特殊的推理;
⑤類比推理是由特殊到一般的推理;
正確的是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.二項(xiàng)式(x+$\frac{1}{2x}$)8的展開式中x4項(xiàng)的系數(shù)為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如表:
年份20102011201220132014
時間代號t12345
儲蓄存款y (千億元)567810
(1)求y關(guān)于t回歸方程$\widehat{y}$=$\widehat{a}$+$\widehat$t;
用所求回歸方程預(yù)測該地區(qū)2016年(t=7)人民幣儲蓄存款.
附:回歸直線方程$\widehat{y}$=$\widehat{a}$+$\widehat$t中,$\widehat$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

同步練習(xí)冊答案