【題目】已知函數(shù)y=f(x)(x∈R),對(duì)函數(shù)y=g(x)(x∈R),定義g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”為函數(shù)y=h(x)(x∈R),y=h(x)滿足:對(duì)任意x∈R,兩個(gè)點(diǎn)(x,h(x)),(x,g(x))關(guān)于點(diǎn)(x,f(x))對(duì)稱.若h(x)是g(x)= 關(guān)于f(x)=3x+b的“對(duì)稱函數(shù)”,且h(x)>g(x)恒成立,則實(shí)數(shù)b的取值范圍是

【答案】(2 ,+∞)
【解析】解:根據(jù)“對(duì)稱函數(shù)”的定義可知, ,
即h(x)=6x+2b﹣ ,
若h(x)>g(x)恒成立,
則等價(jià)為6x+2b﹣ ,
即3x+b> 恒成立,
設(shè)y1=3x+b,y2= ,
作出兩個(gè)函數(shù)對(duì)應(yīng)的圖象如圖,
當(dāng)直線和上半圓相切時(shí),圓心到直線的距離d= ,
即|b|=2
∴b=2 或﹣2 ,(舍去),
即要使h(x)>g(x)恒成立,
則b>2 ,
即實(shí)數(shù)b的取值范圍是(2 ,+∞),
所以答案是:(2 ,+∞)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)和投資單位:萬(wàn)元)

(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;

(2)已知該企業(yè)已籌集到18萬(wàn)元資金,并將全部投入AB兩種產(chǎn)品的生產(chǎn).

若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤(rùn)?

問(wèn):如果你是廠長(zhǎng),怎樣分配這18萬(wàn)元投資,才能使該企業(yè)獲得最大利潤(rùn)?其最大利潤(rùn)約為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x10的均值和方差分別為1和4,若yi=xi+a(a為非零常數(shù),i=1,2,…,10),則y1 , y2 , …,y10的均值和方差分別為(
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:

作物產(chǎn)量(kg)

300

500

概率

0.5

0.5

作物市場(chǎng)價(jià)格(元/kg)

6

10

概率

0.4

0.6


(1)設(shè)X表示在這塊地上種植1季此作物的利潤(rùn),求X的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤(rùn)不少于2000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自點(diǎn)A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:

零件的個(gè)數(shù)x(個(gè))

2

3

4

5

加工的時(shí)間y(小時(shí))

2.5

3

4

4.5

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求出y關(guān)于x的線性回歸方程

(3)試預(yù)測(cè)加工10個(gè)零件需要多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在銳角中,角,所對(duì)的邊分別為,,,且

(1)求角大。

(2)當(dāng)時(shí),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一盒中裝有9張各寫有一個(gè)數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.

1)求所取3張卡片上的數(shù)字完全相同的概率;

2表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學(xué)期望.

(注:若三個(gè)數(shù)滿足,則稱為這三個(gè)數(shù)的中位數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)將1,2,…,2n(n∈N* , n≥2)這2n個(gè)連續(xù)正整數(shù)分成A、B兩組,每組n個(gè)數(shù),A組最小數(shù)為a1 , 最大數(shù)為a2;B組最小數(shù)為b1 , 最大數(shù)為b2;記ξ=a2﹣a1 , η=b2﹣b1
(1)當(dāng)n=3時(shí),求ξ的分布列和數(shù)學(xué)期望;
(2)C表示事件“ξ與η的取值恰好相等”,求事件C發(fā)生的概率P(C);
(3)對(duì)(2)中的事件C, 表示C的對(duì)立事件,判斷P(C)和P( )的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案