設(shè)x,y滿足約束條件
x+y-7≤0
x-3y+1≤0
3x-y-5≥0
,則z=2x-y的最大值為(  )
A、10B、8C、3D、2
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
由z=2x-y得y=2x-z,
平移直線y=2x-z,
由圖象可知當(dāng)直線y=2x-z經(jīng)過點(diǎn)C時(shí),直線y=2x-z的截距最小,
此時(shí)z最大.
x+y-7=0
x-3y+1=0
,解得
x=5
y=2
,即C(5,2)
代入目標(biāo)函數(shù)z=2x-y,
得z=2×5-2=8.
故選:B.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+2x+2,  x≤0
-x2,            x>0
,若f(f(a))=2,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,平面內(nèi)一點(diǎn)P滿足
CP
=
2
3
CA
+
1
3
CB
,若|
PB
|=t|
PA
|,則t的值為( 。
A、3
B、
1
3
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=ax-ln(x+1)在點(diǎn)(0,0)處的切線方程為y=2x,則a=( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b>0,橢圓C1的方程為
x2
a2
+
y2
b2
=1,雙曲線C2的方程為
x2
a2
-
y2
b2
=1,C1與C2的離心率之積為
3
2
,則C2的漸近線方程為( 。
A、x±
2
y=0
B、
2
x±y=0
C、x±2y=0
D、2x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
(log2x)2-1
的定義域?yàn)椋ā 。?/div>
A、(0,
1
2
B、(2,+∞)
C、(0,
1
2
)∪(2,+∞)
D、(0,
1
2
]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是( 。
A、11B、15C、16D、22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD,現(xiàn)要在四棱錐的各個(gè)面上涂色,有4種不同的顏色可供選擇,要求相鄰的面不同色,則不同的涂色方法有( 。┓N.
A、60B、120C、48D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知數(shù)列{an}滿足a1=1,a2n-a2n-1=2,a2n+1-a2n=3n(n∈N*).
(I)計(jì)算:(a3-a1)+(a5-a3),并求a5;
(Ⅱ)求a2n-1(用含n的式子表示);
(Ⅲ)記bn=a2n-1+a2n,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案