5.$\overrightarrow{AB}$+$\overrightarrow{CF}$+$\overrightarrow{BC}$+$\overrightarrow{FA}$=$\overrightarrow{0}$.

分析 利用向量的多邊形法則即可得出.

解答 解:原式=$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CF}+\overrightarrow{FA}$
=$\overrightarrow 0$,
故答案為:$\overrightarrow{0}$.

點評 本題考查了向量的多邊形法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知實數(shù)x,y滿足x2+y2-4x-6y+9=0,則x2+y2的取值范圍是$[17-4\sqrt{13},17+4\sqrt{13}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△OAB中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{2}{5}$$\overrightarrow{OB}$,AD與BC交于點M,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$.在線段AC上取一點E,在線段BD上取一點F,使EF過點M,設(shè)$\overrightarrow{OE}$=p$\overrightarrow{OA}$,$\overrightarrow{OF}$=q$\overrightarrow{OB}$.
(1)用$\vec a,\vec b$向量表示$\overrightarrow{OM}$
(2 )求證:$\frac{1}{6p}$+$\frac{1}{3q}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知△ABC的面積為$\frac{1}{4}({a^2}+{b^2}-{c^2})$,則角C的度數(shù)是( 。
A.45B.60C.120D.135

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線x+2y+3=0將圓(x-a)2+(y+5)2=3平分,則a=( 。
A.13B.7C.-13D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在等差數(shù)列{an}中,若a1+a3+a5=3,則a2+a4等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.周立波是海派清口創(chuàng)始人和《壹周•立波秀》節(jié)目的主持人,他的點評視角獨特,語言幽默犀利,給觀眾留下了深刻的印象.某機構(gòu)為了了解觀眾對《壹周•立波秀》節(jié)目的喜愛程度,隨機調(diào)查了觀看了該節(jié)目的140名觀眾,得到如下的列聯(lián)表:(單位:名)
總計
喜愛4060100
不喜愛202040
總計6080140
(Ⅰ)從這60名男觀眾中按對《壹周•立波秀》節(jié)目是否喜愛采取分層抽樣,抽取一個容量為6的樣本,問樣本中喜愛與不喜愛的觀眾各有多少名?
(Ⅱ)根據(jù)以上列聯(lián)表,問能否在犯錯誤的概率不超過0.025的前提下認為觀眾性別與喜愛《壹周•立波秀》節(jié)目有關(guān).(精確到0.001)
(Ⅲ)從(Ⅰ)中的6名男性觀眾中隨機選取兩名作跟蹤調(diào)查,求選到的兩名觀眾都喜愛《壹周•立波秀》節(jié)目的概率.
p(k2≥k00.100.050.0250.0100.005
k02.7053.8415.0246.6357.879
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)y=loga(x+3)-1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中mn>0,求$\frac{1}{m}$+$\frac{2}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a1=5,an=2an-1+3(n≥2),則a6=253.

查看答案和解析>>

同步練習(xí)冊答案