在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對(duì)各種不同的搭配方式作比較.在試制某種洗滌劑時(shí),需要選用兩種不同的添加劑.現(xiàn)有芳香度分別為1,2,3,4,5,6的六種添加劑可供選用.根據(jù)試驗(yàn)設(shè)計(jì)原理,通常首先要隨機(jī)選取兩種不同的添加劑進(jìn)行搭配試驗(yàn).用X表示所選用的兩種不同的添加劑的芳香度之和.求所選用的兩種不同的添加劑的芳香度之和等于6的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了解某市的交通狀況,現(xiàn)對(duì)其6條道路進(jìn)行評(píng)估,得分分別為:5,6,7,8,9,10.規(guī)定評(píng)估的平均得分與全市的總體交通狀況等級(jí)如下表:

評(píng)估的平均得分



全市的總體交通狀況等級(jí)
不合格
合格
優(yōu)秀
(1)求本次評(píng)估的平均得分,并參照上表估計(jì)該市的總體交通狀況等級(jí);
(2)用簡(jiǎn)單隨機(jī)抽樣方法從這條道路中抽取條,它們的得分組成一個(gè)樣本,求該樣本的平均數(shù)與總體的平均數(shù)之差的絕對(duì)值不超過(guò)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)甲、乙、丙三人每次射擊命中目標(biāo)的概率分別為0.7、0.6和0.5.三人各向目標(biāo)射擊一次,求至少有一人命中目標(biāo)的概率及恰有兩人命中目標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)連續(xù)擲兩次骰子得到的點(diǎn)數(shù)分別為m、n,令平面向量a=(m,n),b=(1,-3).
(1) 求使得事件“ab”發(fā)生的概率;
(2) 求使得事件“|a|≤|b|”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

生活富裕了,農(nóng)民也健身啦,一天,一農(nóng)民夫婦帶著小孩共3人在新農(nóng)村健身房玩?zhèn)髑蛴螒颍智蛘邔⑶虻瓤赡艿膫鹘o其他2人,若球首先從父親傳出,經(jīng)過(guò)4次傳球.
(1)求球恰好回到父親手中的概率;
(2)求小孩獲球(獲得他人傳來(lái)的球)的次數(shù)為2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙、丙三個(gè)車床加工的零件分別為350個(gè),700個(gè),1050個(gè),現(xiàn)用分層抽樣的方法隨機(jī)抽取6個(gè)零件進(jìn)行檢驗(yàn).
(1)從抽取的6個(gè)零件中任意取出2個(gè),已知這兩個(gè)零件都不是甲車床加工的,求其中至少有一個(gè)是乙車床加工的零件;
(2)從抽取的6個(gè)零件中任意取出3個(gè),記其中是乙車床加工的件數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠在試驗(yàn)階段大量生產(chǎn)一種零件,這種零件有兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若有且僅有一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為,至少一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為.按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品.
(1)求一個(gè)零件經(jīng)過(guò)檢測(cè)為合格品的概率是多少?
(2)任意依次抽取該種零件4個(gè),設(shè)表示其中合格品的個(gè)數(shù),求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙等五名大運(yùn)會(huì)志愿者被隨機(jī)分到A、BC、D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(1)求甲、乙兩人同時(shí)參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一崗位服務(wù)的概率;
(3)設(shè)隨機(jī)變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩人進(jìn)行投籃比賽,兩人各投3球,誰(shuí)投進(jìn)的球數(shù)多誰(shuí)獲勝,已知每次投籃甲投進(jìn)的概率為,乙投進(jìn)的概率為,求:
(1)甲投進(jìn)2球且乙投進(jìn)1球的概率;
(2)在甲第一次投籃未投進(jìn)的條件下,甲最終獲勝的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案