【題目】已知:以點(diǎn) 為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn),
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=﹣2x+4與圓C交于點(diǎn)M,N,若OM=ON,求圓C的方程.
【答案】
(1)解:∵圓C過(guò)原點(diǎn)O,
∴ ,
設(shè)圓C的方程是 ,
令x=0,得 ,
令y=0,得x1=0,x2=2t
∴ ,
即:△OAB的面積為定值;
(2)解:∵OM=ON,CM=CN,
∴OC垂直平分線段MN,
∵kMN=﹣2,∴ ,
∴直線OC的方程是 ,
∴ ,解得:t=2或t=﹣2,
當(dāng)t=2時(shí),圓心C的坐標(biāo)為(2,1), ,
此時(shí)C到直線y=﹣2x+4的距離 ,
圓C與直線y=﹣2x+4相交于兩點(diǎn),
當(dāng)t=﹣2時(shí),圓心C的坐標(biāo)為(﹣2,﹣1), ,
此時(shí)C到直線y=﹣2x+4的距離 ,
圓C與直線y=﹣2x+4不相交,
∴t=﹣2不符合題意舍去,
∴圓C的方程為(x﹣2)2+(y﹣1)2=5.
【解析】(1)求出半徑,寫(xiě)出圓的方程,再解出A、B的坐標(biāo),表示出面積即可.(2)通過(guò)題意解出OC的方程,解出t 的值,直線y=﹣2x+4與圓C交于點(diǎn)M,N,判斷t是否符合要求,可得圓的方程.
【考點(diǎn)精析】關(guān)于本題考查的截距式方程和圓的標(biāo)準(zhǔn)方程,需要了解直線的截距式方程:已知直線與軸的交點(diǎn)為A,與軸的交點(diǎn)為B,其中;圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,且f(x)在( , )上單調(diào),則ω的最大值為( )
A.11
B.9
C.7
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若曲線C1:x2+y2﹣2x=0與曲線C2:mx2﹣xy+mx=0有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.(﹣ , )
B.(﹣∞,﹣ )∪( ,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣ ,0)∪(0, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2﹣12x﹣14y+60=0及其上一點(diǎn)A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(3)設(shè)點(diǎn)T(t,0)滿足:存在圓M上的兩點(diǎn)P和Q,使得 + = ,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠36名工人年齡數(shù)據(jù)如圖:
工人編號(hào) | 年齡 | 工人編號(hào) | 年齡 | 工人編號(hào) | 年齡 | 工人編號(hào) | 年齡 |
1 | 40 | 10 | 36 | 19 | 27 | 28 | 34 |
(1)用系統(tǒng)抽樣法從36名工人中抽取容量為9的樣本,且在第一分段里用隨機(jī)抽樣法抽到的年齡數(shù)據(jù)為44,列出樣本的年齡數(shù)據(jù);
(2)計(jì)算(1)中樣本的均值 和方差s2;
(3)36名工人中年齡在 ﹣s和 +s之間有多少人?所占百分比是多少(精確到0.01%)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(sin(2x+ ),sinx), =(1,sinx),f(x)= .
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a=2 , ,若 sin(A+C)=2cosC,求b的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F是雙曲線 =1(a>0,b>0)的左焦點(diǎn),E是該雙曲線的右頂點(diǎn),過(guò)點(diǎn)F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若△ABE是銳角三角形,則該雙曲線的離心率e的取值范圍為( )
A.(1,2)
B.(2,1+ )
C.( ,1)
D.(1+ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) , 是其函數(shù)圖象的一條對(duì)稱軸. (Ⅰ)求ω的值;
(Ⅱ)若f(x)的定義域?yàn)? ,值域?yàn)閇1,5],求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高二年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),[90,100]后得到如圖的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校高二年級(jí)共有學(xué)生640人,試估計(jì)該校高二年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com