6.若實數(shù) x,y滿足 (x-2)2+y2=1,則$\frac{y}{x}$的最大值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

分析 利用$\frac{y}{x}$的幾何意義,以及圓心到直線的距離等于半徑,求出k的值,可得最大值.

解答 解:$\frac{y}{x}$的最值即為過原點的直線與圓相切時該直線的斜率.
設$\frac{y}{x}$=k,則kx-y=0.由$\frac{|2k|}{\sqrt{1+{k}^{2}}}$=1,得k=±$\frac{\sqrt{3}}{3}$,
故($\frac{y}{x}$)max=$\frac{\sqrt{3}}{3}$.
故選B.

點評 本題考查直線的斜率,直線與圓的位置關系,考查計算能力,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合U={-5,-3,1,2,3,4,5,6},集合A={x|x2-7x+12=0},集合B={a2,2a-1,6}.若A∩B={4},且B⊆U,則a等于(  )
A.2或$\frac{5}{2}$B.±2C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)$y=\sqrt{3}sinx+cosx$的圖象可以由函數(shù)y=2sinx的圖象至少向左平移$\frac{π}{6}$個單位得到.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.點P(-1,2,3)關于xOz平面對稱的點的坐標是(-1,-2,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對于給定的正數(shù)k,定義函數(shù):${f_k}(x)=\left\{\begin{array}{l}f(x)(f(x)≤k)\\ k\;\;\;\;\;\;(f(x)>k)\end{array}\right.$,取函數(shù)f(x)=2-x-e-x,若對任意的x∈(-∞,+∞),恒有fk(x)=f(x),則(  )
A.k的最大值為2B.k的最小值為2C.k的最大值為1D.k的最小值為1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知f(x+2)=x2+$\frac{1}{{x}^{2}}$,則f(3)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知不等式組$\left\{\begin{array}{l}{2x+y-3≤0}\\{x-y+2≥0}\\{2x-3y-3≤0}\end{array}\right.$表示的平面區(qū)域為D,P(x,y)為D上一點,則|x+4|+|y+3|的最大值為( 。
A.$\frac{17}{2}$B.9C.$\frac{29}{3}$D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設函數(shù)f(x)=a•ex-1(a為常數(shù)),且$f(-1)=\frac{2}{e^2}$
(1)求a值;
(2)設$g(x)=\left\{\begin{array}{l}f(x),x<2\\{log_3}(x-1)\begin{array}{l}{\;}&{x≥2}\end{array}\end{array}\right.$,求不等式g(x)<2的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知命題$p:sinx=\frac{1}{2}$,命題$q:x=\frac{π}{6}+2kπ,k∈Z$,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案