6.“m=1”是“函數(shù)f(x)=log2(1+mx)-log2(1-mx)為奇函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 利用函數(shù)的奇偶性的判定方法、簡易邏輯的判定方法即可得出.

解答 解:函數(shù)f(x)=log2(1+mx)-log2(1-mx)為奇函數(shù),則f(-x)+f(x)=log2(1-mx)-log2(1+mx)+log2(1+mx)-log2(1-mx)=0,m,x滿足:$\left\{\begin{array}{l}{1+mx>0}\\{1-mx>0}\end{array}\right.$.
可得“m=1”是“函數(shù)f(x)=log2(1+mx)-log2(1-mx)為奇函數(shù)”,反之不成立,例如取m=-1.
因此“m=1”是“函數(shù)f(x)=log2(1+mx)-log2(1-mx)為奇函數(shù)”的充分不必要條件.
故選:A.

點評 本題考查了簡易邏輯的判定方法、函數(shù)的奇偶性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)=2|x-m|-1(m∈R)為偶函數(shù),記a=f(-2),b=f(log25),c=f(2m),則a,b,c的大小關系為( 。
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知集合A={x|x≥3或x≤1},B={x|x2-6x+8<0},則(∁RA)∩B=(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某班為了提高學生學習英語的興趣,在班內(nèi)舉行英語寫、說、唱綜合能力比賽,比賽分為預賽和決賽2個階段,預賽為筆試,決賽為說英語、唱英語歌曲,將所有參加筆試的同學進行統(tǒng)計,得到頻率分布直方圖,其中后三個矩形高度之比依次為4:2:1,落在[80,90)的人數(shù)為12人.
(Ⅰ)求此班級人數(shù);
(Ⅱ)按規(guī)定預賽成績不低于90分的選手參加決賽,已知甲乙兩位選手已經(jīng)取得決賽資格,參加決賽的選手按抽簽方式?jīng)Q定出場順序.
(i)甲不排在第一位乙不排在最后一位的概率;
(ii)記甲乙二人排在前三位的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{7}$,$\overrightarrow a•(\overrightarrow b-\overrightarrow a)=-4$,則$\overrightarrow a$與$\overrightarrow b$夾角是$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若$\int_1^e{\frac{2}{x}dx=a}$,則${({x-\frac{a}{x}})^6}$展開式中的常數(shù)項為-160.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.2017年由央視舉辦的一檔文化益智節(jié)目《中國詩詞大會》深受觀眾喜愛,某記者調(diào)查了部分年齡在[10,70]的觀眾,得到如下頻率分布直方圖.若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人.
(1)請補充完整頻率分布直方圖,并估計這組數(shù)據(jù)的平均數(shù)$\overline x$;
(2)現(xiàn)根據(jù)觀看年齡,從第四組和第六組的所有觀眾中任意選2人,記他們的年齡分別為x,y,若|x-y|≥10,則稱此2人為“最佳詩詞搭檔”,試求選出的2人為“最佳詩詞搭檔”的概P;
(3)以此樣本的頻率當作概率,現(xiàn)隨機從這組樣本中選出3名觀眾,求年齡不低于40歲的人數(shù)ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,$AB=3,AC=2,\overrightarrow{BD}=\frac{1}{2}\overrightarrow{BC},則\overrightarrow{AD}•\overrightarrow{DB}$的值為( 。
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.$\frac{5}{4}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知正方體外接球的體積是$\frac{32}{3}π$,那么此正方體的棱長等于$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

同步練習冊答案