數(shù)列{n•2n}的前n項(xiàng)和Sn=
 
考點(diǎn):等比數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:由已知得Sn=1×2+2×22+3×23+…+n×2n,由此利用錯(cuò)位相減法能求出結(jié)果.
解答: 解:∵數(shù)列{n•2n}的前n項(xiàng)和Sn
∴Sn=1×2+2×22+3×23+…+n×2n,①
2Sn=1×22+2×23+3×24+…+n×2n+1,②
∴-Sn=2+22+23+…+2n-n×2n+1
=
2(1-2n)
1-2
-n×2n+1
=2n+1-2-n×2n+1,
∴Sn=(n-1)•2n+1+2.
故答案為:(n-1)•2n+1+2.
點(diǎn)評(píng):本題考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要注意錯(cuò)位相減法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
1
a
,
1
b
1
c
是等差數(shù)列,求證:
b+c-a
a
,
a+c-b
b
,
a+b-c
c
也是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如表是某城市2001-2010年月平均氣溫(華氏F):
 月份 1 2 3 4 5 6
 平均氣溫 21.4 26.0 
36.0
 48.8 59.1 68.6
 月份 7 8 9 10 11 12
 平均氣溫 73.1 71.9 64.7 53.5 39.8 27.7
若用x表示月份,y表示平均氣溫,則下面四個(gè)函數(shù)模型中最合適的是( 。
A、y=26cos
π
6
x
B、y=26cos
π(x-1)
6
+46
C、y=-26cos
π(x-1)
6
+46
D、y=26sin
π
6
x+26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x(x∈R)
(1)求函數(shù)f(x)的最小正周期;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)y=f(x)在區(qū)間[-
π
2
,
π
2
]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二項(xiàng)式(3
3x
+
1
x
n的展開式的各項(xiàng)系數(shù)的和為p,所有二項(xiàng)式系數(shù)的和為S.若p+S=272,則n等于(  )
A、4B、5C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax2+1
bx+c
,(a,b,c∈Z)是奇函數(shù),又f(1)=2,f(2)<3.
(1)求a,b,c的值;
(2)證明:當(dāng)x>1時(shí)f(x)為增函數(shù).
2
2
<x<1,f(x)為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意的x∈[0,1],關(guān)于x的不等式ex(e2x+a2)-2ae2x≤1恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα-cosα=
17
13
,α∈(0,π),求tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=-x2-2ax,在區(qū)間[1,2]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案