已知F1(-c,0),F(xiàn)2(c,0)是橢圓的左、右焦點(diǎn),過(guò)點(diǎn)F1作傾斜角為S的動(dòng)直線l交橢圓于A,B兩點(diǎn).當(dāng)時(shí),,且|AB|=3.

(1)求橢圓的離心率及橢圓的標(biāo)準(zhǔn)方程;

(2)求△ABF2面積的最大值,并求出使面積達(dá)到最大值時(shí)直線l的方程.

答案:
解析:

  解:(1)直線的方程為,

  由,消去得,

  設(shè),則①,②,

  又由③,

  由①②得,,

  

  ,

  ∴,∴橢圓標(biāo)準(zhǔn)方程為

  (2)設(shè)直線的方程為,由,消去得,,

  

  當(dāng),即時(shí),使△面積達(dá)到最大值,此時(shí)直線的方程為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-c,0),F(xiàn)2(c,0)為橢圓
x2
a2
+
y2
b2
=1
的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn)且
PF1
PF2
=c2
,則此橢圓離心率的取值范圍是(  )
A、[
3
3
,1)
B、[
1
3
1
2
]
C、[
3
3
2
2
]
D、(0,
2
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-c,0),F(xiàn)2(c,0)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),過(guò)點(diǎn)F1作傾斜角為θ的動(dòng)直線l交橢圓于A,B兩點(diǎn).當(dāng)θ=
π
4
時(shí),
AF1
=(2-
3
)
F1B
,且|AB|=3.
(1)求橢圓的離心率及橢圓的標(biāo)準(zhǔn)方程;
(2)求△ABF2面積的最大值,并求出使面積達(dá)到最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-c,0),F(xiàn)2(c,0)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F1作傾斜角為60° 的直線l交橢圓于A,B兩點(diǎn),ABF2的內(nèi)切圓的半徑為
2
3
7
c
(I)求橢圓的離心率;   
(II)若|AB|=8
2
,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)一模)已知F1(-c,0),F(xiàn)2(c,0)分別是雙曲線C1
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個(gè)焦點(diǎn),雙曲線C1和圓C2:x2+y2=c2的一個(gè)交點(diǎn)為P,且2∠PF1F2=∠PF2F1,那么雙曲線C1的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-c,0),F(xiàn)2(c,0) (c>0)是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),圓M的方程是(x-
5
4
c)2+y2=
9c2
16

(1)若P是圓M上的任意一點(diǎn),求證:
|PF1|
|PF2|
是定值;
(2)若橢圓經(jīng)過(guò)圓上一點(diǎn)Q,且cos∠F1QF2=
3
5
,求橢圓的離心率;
(3)在(2)的條件下,若|OQ|=
34
2
,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案