【題目】某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交元的管理費,預(yù)計當(dāng)每件商品的售價為元時,一年的銷售量為萬件.

1)求該連鎖分店一年的利潤(萬元)與每件商品的售價的函數(shù)關(guān)系式;

2)當(dāng)每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出的最大值.

【答案】I.

II)當(dāng)每件商品的售價為7元時,該連鎖分店一年的利潤最大,最大值為萬元;

當(dāng)每件商品的售價為元時,該連鎖分店一年的利潤最大,最大值為萬元.

【解析】

試題(1)該連鎖分店一年的利潤L(萬元)與售價x的函數(shù)關(guān)系式為

L(x)= (x4a)(10x)2,x∈[8,9]

2=(10x)(18+2a3x),

,得x =6+ax=10(舍去).∵1≤a≤3,≤6+a≤8.

所以L(x)x∈[8,9]上單調(diào)遞減,故=L(8)=(84a)(108)2=164a

M(a) =164a.

答:當(dāng)每件商品的售價為8元時,該連鎖分店一年的利潤L最大,

最大值為164a萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是

A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時間至少80分鐘

B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高

C. 這40名工人完成任務(wù)所需時間的中位數(shù)為80

D. 無論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時間都是80分鐘.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)P是橢圓上一點,M,N分別是兩圓(x+4)2y2=1(x-4)2y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三角形 的邊長為3, 分別是邊上的點,滿足 (如圖1).將折起到的位置,使平面平面,連接(如圖2).

(1)求證:平面 ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】邗江中學(xué)高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會.

(1)記“選出2人參加義工活動的次數(shù)之和為4”為事件,求事件發(fā)生的概率;

(2)設(shè)為選出2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為.數(shù)列滿足.

1)若,且,求正整數(shù)的值;

2)若數(shù)列,均是等差數(shù)列,求的取值范圍;

3)若數(shù)列是等比數(shù)列,公比為,且,是否存在正整數(shù),使,成等差數(shù)列,若存在,求出一個的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且在上單調(diào)遞減,則的解集為  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點作圓的兩條切線,切點分別為,直線恰好經(jīng)過橢圓C的右頂點和上頂點.

1)求橢圓C方程;

2)過橢圓C左焦點F的直線l交橢圓C兩點,橢圓上存在一點P,使得四邊形為平行四邊形,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某乳業(yè)公司生產(chǎn)甲、乙兩種產(chǎn)品,需要A,B,C三種苜蓿草飼料,生產(chǎn)1個單位甲種產(chǎn)品和生產(chǎn)1個單位乙種產(chǎn)品所需三種苜蓿草飼料的噸數(shù)如下表所示:

產(chǎn)品

苜蓿草飼料

A

B

C

4

8

3

5

5

10

現(xiàn)有A種飼料200噸,B種飼料360噸,C種飼料300噸,在此基礎(chǔ)上生產(chǎn)甲乙兩種產(chǎn)品,已知生產(chǎn)1個單位甲產(chǎn)品,產(chǎn)生的利潤為2萬元;生產(chǎn)1個單位乙產(chǎn)品,產(chǎn)生的利潤為3萬元,分別用x,y表示生產(chǎn)甲、乙兩種產(chǎn)品的數(shù)量.

1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

2)問分別生產(chǎn)甲乙兩種產(chǎn)品多少時,能夠產(chǎn)出最大的利潤?并求出此最大利潤.

查看答案和解析>>

同步練習(xí)冊答案