(2013•朝陽(yáng)區(qū)一模)如圖,圓O是△ABC的外接圓,過(guò)點(diǎn)C作圓O的切線交BA的延長(zhǎng)線于點(diǎn)D.若CD=
3
,AB=AC=2,則線段AD的長(zhǎng)是
1
1
;圓O的半徑是
2
2
分析:①由切割線定理得CD2=DA•DB,即可得出DA;②由余弦定理可得∠DCA,利用弦切角定理可得∠ABC=∠DCA,再利用正弦定理得2R=
AC
sin∠ABC
即可.
解答:解:①∵CD是⊙O的切線,由切割線定理得CD2=DA•DB,CD=
3
,DB=DA+AB=DA+2,
(
3
)2=DA(DA+2)
,又DA>0,解得DA=1.
②在△ACD中,由余弦定理可得cos∠ACD=
AC2+CD2-DA2
2AC•CD
=
22+(
3
)2-12
2×2×
3
=
3
2
,
∵0<∠ACD<π,∴∠ACD=
π
6

根據(jù)弦切角定理可得∠ABC=∠DCA=
π
6

由正弦定理可得2R=
AC
sin∠ABC
=
2
sin
π
6
=4,∴R=2.
故答案分別為1,2.
點(diǎn)評(píng):熟練掌握切割線定理、弦切角定理、正弦定理、余弦定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•朝陽(yáng)區(qū)一模)已知函數(shù)f(x)=
3
2
sinωx-sin2
ωx
2
+
1
2
(ω>0)的最小正周期為π.
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[0,
π
2
]
時(shí),求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•朝陽(yáng)區(qū)一模)若直線y=x+m與圓x2+y2+4x+2=0有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•朝陽(yáng)區(qū)一模)盒子中裝有四張大小形狀均相同的卡片,卡片上分別標(biāo)有數(shù)字-1,0,1,2.稱“從盒中隨機(jī)抽取一張,記下卡片上的數(shù)字后并放回”為一次試驗(yàn)(設(shè)每次試驗(yàn)的結(jié)果互不影響).
(Ⅰ)在一次試驗(yàn)中,求卡片上的數(shù)字為正數(shù)的概率;
(Ⅱ)在四次試驗(yàn)中,求至少有兩次卡片上的數(shù)字都為正數(shù)的概率;
(Ⅲ)在兩次試驗(yàn)中,記卡片上的數(shù)字分別為ξ,η,試求隨機(jī)變量X=ξ•η的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•朝陽(yáng)區(qū)一模)已知函數(shù)f(x)=x2-(a+2)x+alnx+2a+2,其中a≤2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,2]上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•朝陽(yáng)區(qū)一模)設(shè)τ=(x1,x2,…,x10)是數(shù)1,2,3,4,5,6,7,8,9,10的任意一個(gè)全排列,定義S(τ)=
10k=1
|2xk-3xk+1|
,其中x11=x1
(Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S(τ)的值;
(Ⅱ)求S(τ)的最大值;
(Ⅲ)求使S(τ)達(dá)到最大值的所有排列τ的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案