某幾何體的三視圖及其相應(yīng)的度量信息如圖所示,則該幾何體的表面積為( 。
A、20+4
2
B、24
C、24+4
2
D、28
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由三視圖知幾何體的上部是四棱錐,下部是正方體,且正方體的邊長為2,四棱錐的高為1,側(cè)面上的斜高為
2
,代入表面積公式計(jì)算可得答案.
解答: 解:由三視圖知幾何體的上部是四棱錐,下部是正方體,且正方體的邊長為2;
四棱錐的高為1,底面正方形的邊長也為2,
∴棱錐的斜高為
2

∴幾何體的表面積S=5×2×2+4×
1
2
×2×
2
=20+4
2

故選A
點(diǎn)評:本題考查了由三視圖求幾何體的表面積,解題的關(guān)鍵是由三視圖判斷幾何體的形狀及數(shù)據(jù)所對應(yīng)的幾何量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知M是橢圓
x2
9
+
y2
16
=1
上的點(diǎn),若F1,F(xiàn)2是橢圓的兩個焦點(diǎn),則|MF1|+|MF2|=(  )
A、6B、8C、18D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正項(xiàng)等比數(shù)列{an}中,已知a3a5=64,則a1+a7的最小值為( 。
A、64B、32C、16D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={1,2,3,4,5},集合S={1,2,3,4},則∁US=(  )
A、{5}
B、{1,2,5}
C、{2,3,4}
D、{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin(ωx+φ),(ω>0,|φ|≤
π
2
)在[0,
3
]上單調(diào),且f(
π
3
)=0,f(
3
)=2,則f(0)等于( 。
A、-2
B、-1
C、-
3
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)在區(qū)間(a,b)上是增函數(shù),在區(qū)間(b,c)上也是增函數(shù),則函數(shù)f(x)在區(qū)間(a,b)∪(b,c)上( 。
A、必是增函數(shù)
B、必是減函數(shù)
C、是增函數(shù)或減函數(shù)
D、無法確定單調(diào)性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,F(xiàn)分別是雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的左頂點(diǎn)、右焦點(diǎn),過F的直線l與C的一條漸近線垂直且與另一條漸近線和y軸分別交于P,Q兩點(diǎn).若AP⊥AQ,則C的離心率是( 。
A、
2
B、
3
C、
1+
13
4
D、
1+
17
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x、y滿足約束條件
x-ay-1≥0
2x+y≥0
x≤1
 (a∈R),目標(biāo)函數(shù)z=x+3y只有當(dāng)
x=1
y=0
時取得最大值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選擇適當(dāng)?shù)姆椒ū硎鞠铝屑霞?br />(1)由方程x(x2-2x-3)=0的所有實(shí)數(shù)根組成的集合;
(2)大于2且小于6的有理數(shù);
(3)由直線y=-x+4上的橫坐標(biāo)和縱坐標(biāo)都是自然數(shù)的點(diǎn)組成的集合.

查看答案和解析>>

同步練習(xí)冊答案