(本題滿分13分)設(shè)數(shù)列為單調(diào)遞增的等差數(shù)列依次成等比數(shù)列.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若求數(shù)列的前項和;

(Ⅲ)若,求證:

 

【答案】

(1)

(2)

(3)根據(jù),放縮來求和得到證明。

【解析】

試題分析:解:⑴…3分

…7分

所以

             …………………….13分

考點:本試題主要是考查了數(shù)列的通項公式的求解,以及數(shù)列求和的應(yīng)用。

點評:解決該試題最重要的是第一步中通項公式的求解,利用等差數(shù)列的通項公式,得到數(shù)列,然后利用裂項求和得到第二問,裂項法是求和中重要而又常用 方法之一。同時能借助于放縮法得到不等式的證明。第三問是個難點。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三上學(xué)期期末模塊考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分13分)

設(shè)函數(shù)

(Ⅰ)求的最小值;

(Ⅱ)若恒成立,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆天津市高一第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分13分)

設(shè),其中,如果,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本題滿分13分)設(shè)命題:函數(shù)-2-1在區(qū)間(-∞,3]上單調(diào)遞減;命題:函數(shù)的定義域是.如果命題為真命題,為假命題,求的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本題滿分13分)       設(shè)銳角△ABC的三內(nèi)角A,B,C的對邊分別為 a,bc,向量

 , ,已知共線 。   (Ⅰ)求角A的大。

(Ⅱ)若,,且△ABC的面積小于,求角B的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題

(本題滿分13分)

設(shè)函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)當(dāng)時,求函數(shù)的最大值及取得最大值時的的值.

 

查看答案和解析>>

同步練習(xí)冊答案