設(shè)為函數(shù)的導(dǎo)數(shù),且的大小關(guān)系是

A.       B.      C.     D.不能確定

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)的導(dǎo)數(shù)為0的點稱為函數(shù)的駐點,若點(1,1)為函數(shù)f(x)的駐點,則稱f(x)具有“1-1駐點性”.
(1)設(shè)函數(shù)f(x)=-x+2
x
+alnx,其中a≠0.
①求證:函數(shù)f(x)不具有“1-1駐點性”
②求函數(shù)f(x)的單調(diào)區(qū)間
(2)已知函數(shù)g(x)=bx3+3x2+cx+2具有“1-1駐點性”,給定x1,x2∈R,x1<x2,設(shè)λ為實數(shù),且λ≠-1,α=
x1+λx2
1+λ
,β=
x2+λx1
1+λ
,若|g(α)-g(β)|>|g(x1)-g(x2)|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足.”

(1)判斷函數(shù)是否是集合M中的元素,并說明理由;

(2)集合M中的元素具有下面的性質(zhì):若的定義域為D,則對于任意,都存在,使得等式成立”,試用這一性質(zhì)證明:方程只有一個實數(shù)根;

(3)設(shè)是方程的實數(shù)根,求證:對于定義域中任意的,當(dāng),且時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省黃岡市高三上學(xué)期期末考試文科數(shù)學(xué) 題型:填空題

對于三次函數(shù),給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),的導(dǎo)數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”。某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心。若,請你根據(jù)這一發(fā)現(xiàn),求:

       (1)函數(shù)對稱中心為       ;

       (2)計算=         。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三下學(xué)期數(shù)學(xué)綜合練習(xí)(1) 題型:填空題

對于三次函數(shù),給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),的導(dǎo)數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”。某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心。請你根據(jù)這一發(fā)現(xiàn),求:函數(shù)對稱中心為           ;

 

查看答案和解析>>

同步練習(xí)冊答案