(09年泗陽(yáng)中學(xué)模擬六)(14分)
已知函數(shù)f(x)=為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為
(Ⅰ)求f()的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)舒暢長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
解析:(Ⅰ)f(x)=
=
=2sin(-)
因?yàn)椤?I>f(x)為偶函數(shù),
所以 對(duì)x∈R,f(-x)=f(x)恒成立,
因此 sin(--)=sin(-).
即-sincos(-)+cossin(-)=sincos(-)+cossin(-),
整理得 sincos(-)=0.因?yàn)椤?IMG height=15 src='http://thumb.zyjl.cn/pic1/img/20090427/20090427111845007.gif' width=16>>0,且x∈R,所以 cos(-)=0.
又因?yàn)椤?<<π,故 -=.所以 f(x)=2sin(+)=2cos.
由題意得
故 f(x)=2cos2x.
因?yàn)椤 ?IMG height=41 src='http://thumb.zyjl.cn/pic1/img/20090427/20090427111845010.gif' width=140>
(Ⅱ)將f(x)的圖象向右平移個(gè)個(gè)單位后,得到的圖象,再將所得圖象橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到的圖象.
當(dāng) 2kπ≤≤2 kπ+ π (k∈Z),
即 4kπ+≤≤x≤4kπ+ (k∈Z)時(shí),g(x)單調(diào)遞減.
因此g(x)的單調(diào)遞減區(qū)間為 (k∈Z)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年泗陽(yáng)中學(xué)模擬六)(16分)設(shè)函數(shù)。
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)若對(duì)一切,,求的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年泗陽(yáng)中學(xué)模擬六)(15分)已知m∈R,直線l:和圓C:。
(1)求直線l斜率的取值范圍;
(2)直線l能否將圓C分割成弧長(zhǎng)的比值為的兩段圓。繛槭裁?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年泗陽(yáng)中學(xué)模擬六)(15分
如圖,某小區(qū)準(zhǔn)備在一直角圍墻內(nèi)的空地上植造一塊“綠地”,其中長(zhǎng)為定值, 長(zhǎng)可根據(jù)需要進(jìn)行調(diào)節(jié)(足夠長(zhǎng)).現(xiàn)規(guī)劃在的內(nèi)接正方形內(nèi)種花,其余地方種草,且把種草的面積與種花的面積的比值稱為“草花比”.
(Ⅰ)設(shè),將表示成的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)為多長(zhǎng)時(shí),有最小值?最小值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年泗陽(yáng)中學(xué)模擬六)(14分) 如圖,在多面體ABCDE中,AE⊥ABC,BD∥AE,
且AC=AB=BC=BD=2,AE=1,F(xiàn)在CD上(不含C, D兩點(diǎn))
(1)求多面體ABCDE的體積;
(2)若F為CD中點(diǎn),求證:EF⊥面BCD;
(3)當(dāng)的值= 時(shí),能使AC ∥平面EFB,并給出證明。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com