3.下列函數(shù)中,是偶函數(shù),且在區(qū)間(0,1)上為增函數(shù)的是(  )
A.y=|x|B.y=3-xC.y=$\frac{1}{x}$D.y=-x2+4

分析 判斷函數(shù)的奇偶性以及單調性即可.

解答 解:y=|x|是偶函數(shù),并且在區(qū)間(0,1)上為增函數(shù),正確;
y=3-x不是偶函數(shù),錯誤;
y=$\frac{1}{x}$是奇函數(shù),不正確;
y=-x2+4是偶函數(shù),但是在區(qū)間(0,1)上為減函數(shù),不正確;
故選:A.

點評 本題考查函數(shù)的奇偶性以及函數(shù)的單調性的判斷,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知Rt△ABC斜邊上的高CD=4,則AD•BD=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在等比數(shù)列{an}中,a1=9,a5=a3a42,則a4=( 。
A.$\frac{1}{9}$B.$±\frac{1}{9}$C.$\frac{1}{3}$D.$±\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{ax}{{{x^2}+1}}$(x∈R),如圖是函數(shù)f(x)在[0,+∞)上的圖象,
(1)求a的值,并補充作出函數(shù)f(x)在(-∞,0)上的圖象,說明作圖的理由;
(2)根據圖象指出(不必證明)函數(shù)的單調區(qū)間與值域;
(3)若方程f(x)=lnb恰有兩個不等實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知雙曲線C的焦點與橢圓$\frac{{x}^{2}}{35}$+$\frac{{y}^{2}}{10}$=1的焦點相同,且漸近線方程為y=±$\frac{4}{3}$x.
(1)求雙曲線C的標準方程;
(2)設F1為雙曲線的左焦點,P為雙曲線C的右支上一點,且線段PF1的中點在y軸上,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)g(x)=log${\;}_{\frac{1}{3}}$(x2+$\frac{2}{3}$bx+$\frac{c}{3}$)的單調遞增區(qū)間為( 。
A.[-2,+∞)B.(-∞,-2)C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.正方體AC1的棱長為1,過點A作平面A1BD的垂線,垂足為點H.有以下四個命題:
①點H是△A1BD的垂心;②AH垂直平面CB1D1;
③AH=$\frac{{\sqrt{3}}}{3}$;④點H到平面A1B1C1D1的距離為$\frac{3}{4}$.
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=$\frac{{\sqrt{x+4}}}{{{e^x}-1}}$的定義域為{x|x≥-4,且x≠0}.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆江西吉安一中高三上學期段考一數(shù)學(文)試卷(解析版) 題型:填空題

滿足約束條件:,則的最小值為 ____________.

查看答案和解析>>

同步練習冊答案