【題目】如圖,已知三棱柱中,側(cè)棱與底面垂直,且,,、分別是、的中點(diǎn),點(diǎn)在線段上,且.
(1)求證:不論取何值,總有;
(2)當(dāng)時(shí),求平面與平面所成二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)以點(diǎn)為坐標(biāo)原點(diǎn),以、、所在直線分別為、、軸,建立空間直角坐標(biāo)系,求出向量和的坐標(biāo),通過可證明出;
(2)分別求出平面的一個(gè)法向量和平面的法向量,由此利用向量法能求出平面與平面所成銳二面角的余弦值.
以點(diǎn)為坐標(biāo)原點(diǎn),以、、所在直線分別為、、軸,建立如下圖所示的空間直角坐標(biāo)系,則,,,.
(1),,
,
.
,,
因此,無論取何值,;
(2)當(dāng)時(shí),,,,
而平面的法向量,設(shè)平面的法向量為,
則,解得,則,
設(shè)為平面與平面所成的銳二面角,則.
因此,平面與平面所成二面角的余弦值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的值域;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級(jí)過濾,使用壽命為十年如圖所示兩個(gè)二級(jí)過濾器采用并聯(lián)安裝,再與一級(jí)過濾器串聯(lián)安裝.
其中每一級(jí)過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級(jí)濾芯和二級(jí)濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買濾芯,則一級(jí)濾芯每個(gè)160元,二級(jí)濾芯每個(gè)80元.若客戶在使用過程中單獨(dú)購(gòu)買濾芯則一級(jí)濾芯每個(gè)400元,二級(jí)濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購(gòu)買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級(jí)過濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級(jí)過濾器更換的濾芯個(gè)數(shù)制成的條形圖.
表1:一級(jí)濾芯更換頻數(shù)分布表
一級(jí)濾芯更換的個(gè)數(shù) | 8 | 9 |
頻數(shù) | 60 | 40 |
圖2:二級(jí)濾芯更換頻數(shù)條形圖
以100個(gè)一級(jí)過濾器更換濾芯的頻率代替1個(gè)一級(jí)過濾器更換濾芯發(fā)生的概率,以200個(gè)二級(jí)過濾器更換濾芯的頻率代替1個(gè)二級(jí)過濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16的概率;
(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級(jí)濾芯總數(shù),求的分布列及數(shù)學(xué)期望;
(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買的一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買各級(jí)濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角梯形ABCD中,,,,將直角梯形ABCD(及其內(nèi)部)以AB所在直線為軸順時(shí)針旋轉(zhuǎn)90°,形成如圖所示的幾何體,其中M為的中點(diǎn).
(1)求證:;
(2)求異面直線BM與EF所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,.已知分別是的中點(diǎn).將沿折起,使到的位置且二面角的大小是60°,連接,如圖:
(1)證明:平面平面
(2)求平面與平面所成二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦點(diǎn)在x軸上的橢圓C:經(jīng)過點(diǎn),橢圓C的離心率為.,是橢圓的左、右焦點(diǎn),P為橢圓上任意點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M為的中點(diǎn)(O為坐標(biāo)原點(diǎn)),過M且平行于OP的直線l交橢圓C于A,B兩點(diǎn),是否存在實(shí)數(shù),使得;若存在,請(qǐng)求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知圓,圓.
(1)證明:圓與圓有公共點(diǎn),并求公共點(diǎn)的軌跡的方程;
(2)已知點(diǎn),過點(diǎn)且斜率為的直線與(1)中軌跡相交于兩點(diǎn),記直線的斜率為,直線的斜率為,是否存在實(shí)數(shù)使得為定值?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三個(gè)幾何體組合的正視圖和側(cè)視圖均為如下圖所示,則下列圖中能作為俯視圖的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的點(diǎn)到點(diǎn)的距離比到直線的距離小,為坐標(biāo)原點(diǎn).
(1)過點(diǎn)且傾斜角為的直線與曲線交于、兩點(diǎn),求的面積;
(2)設(shè)為曲線上任意一點(diǎn),點(diǎn),是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長(zhǎng)恒為定值?若存在,求出的方程和定值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com