已知在直角坐標(biāo)系中,曲線的參數(shù)方程為為非零常數(shù),為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,直線的方程為.

(Ⅰ)求曲線的普通方程并說(shuō)明曲線的形狀;

(Ⅱ)是否存在實(shí)數(shù),使得直線與曲線有兩個(gè)不同的公共點(diǎn),且(其中為坐標(biāo)原點(diǎn))?若存在,請(qǐng)求出;否則,請(qǐng)說(shuō)明理由.

 

【答案】

(1),當(dāng)時(shí),曲線C為圓心在原點(diǎn),半徑為2的圓,當(dāng)時(shí),曲線C為中心在原點(diǎn)的橢圓;(2)不存在.

【解析】

試題分析:(1)先將曲線的參數(shù)方程轉(zhuǎn)化為普通方程,討論的值來(lái)判斷方程表示什么圖形;(2)聯(lián)立直線與曲線的方程,因?yàn)橹本與曲線有2個(gè)不同的公共點(diǎn),所以判別式大于0,所以,利用韋達(dá)定理將的關(guān)系代入中,解出相矛盾,所以不存在.

試題解析:(Ⅰ)∵,∴可將曲線C的方程化為普通方程:.      2分

①當(dāng)時(shí),曲線C為圓心在原點(diǎn),半徑為2的圓;              4分

②當(dāng)時(shí),曲線C為中心在原點(diǎn)的橢圓.                     6分

(Ⅱ)直線的普通方程為:.                           8分

聯(lián)立直線與曲線的方程,消,化簡(jiǎn)得.

若直線與曲線C有兩個(gè)不同的公共點(diǎn),則,解得.

                      10分

.

解得相矛盾.   故不存在滿足題意的實(shí)數(shù).        12分

考點(diǎn):1.極坐標(biāo)系及直角坐標(biāo)系的轉(zhuǎn)化;2.根與系數(shù)關(guān)系.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在直角坐標(biāo)系中(O為坐標(biāo)原點(diǎn)),
OA
=(2,5),
OB
=(3,1),
OC
=(x,3)

(I)若A、B、C可構(gòu)成三角形,求x的取值范圍;
(II)當(dāng)x=6時(shí),直線OC上存在點(diǎn)M,且
MA
MB
,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在直角坐標(biāo)系中,直線l的參數(shù)方程為
x=2t+2
y=1+4t
(t為參數(shù)),圓C的參數(shù)方程為
x=1+
2
cosα
y=1+
2
sinα
(α為參數(shù))
(1)試寫(xiě)出直線l的普通方程和圓C的普通方程
(2)判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在直角坐標(biāo)系中,An(an,0),Bn(0,bn)(n∈N*),其中數(shù)列{an},{bn}都是遞增數(shù)列.
(1)若an=2n+1,bn=3n+1,判斷直線A1B1與A2B2是否平行;
(2)若數(shù)列{an},{bn}都是正項(xiàng)等差數(shù)列,設(shè)四邊形AnBnBn+1An+1的面積為Sn(n∈N*),求證:{Sn}也是等差數(shù)列;
(3)若an=2nbn=an+b(a,b∈Z),b1≥-12,記直線AnBn的斜率為kn,數(shù)列{kn}的前8項(xiàng)依次遞減,求滿足條件的數(shù)列{bn}的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆黑龍江省哈三中高三第一次模擬考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分10分)
選修4-4:坐標(biāo)系與參數(shù)方程
已知在直角坐標(biāo)系中,圓錐曲線的參數(shù)方程為為參數(shù)),定點(diǎn),是圓錐曲線的左,右焦點(diǎn).
(Ⅰ)以原點(diǎn)為極點(diǎn)、軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過(guò)點(diǎn)且平行于直線的直線的極坐標(biāo)方程;
(Ⅱ)在(I)的條件下,設(shè)直線與圓錐曲線交于兩點(diǎn),求弦的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建莆田一中高三上學(xué)期第一學(xué)段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸)中,曲線的方程為

(Ⅰ)求曲線直角坐標(biāo)方程;

(Ⅱ)若曲線、交于A、B兩點(diǎn),定點(diǎn),求的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案