已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦瞇分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)過F1的直線l與橢圓C相交于A,B兩點,且的面積為,求直線l的方程.

(I);(II).

解析試題分析:(I)設(shè)出橢圓的方程,根據(jù)已知條件列方程組,求出的值,然后寫出橢圓的標準方程;(II)設(shè)直線的方程為,這樣避免討論斜率存在與否,與橢圓的方程聯(lián)立方程組解得,,根據(jù)三角形的面積公式表示出的面積,結(jié)合已知條件求得的值,代入所設(shè)的直線方程即可.
試題解析:(I)設(shè)橢圓的方程為
由已知可得                                3分
解得:,∴橢圓的方程為.           5分
(II)設(shè)直線的方程為,
 消去,          7分
,設(shè)
,,                   8分
.   9分

化簡,得,即,
解得.                                             11分
故所求直線方程為.                12分
考點:1、橢圓的定義及性質(zhì)的應(yīng)用;2、方程的根與系數(shù)的關(guān)系;3、三角形的面積公式;4、直線方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.(1)求橢圓C的標準方程;(2)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線的焦點為,準線為,,以為圓心的圓相切于點,的縱坐標為,是圓軸除外的另一個交點.
(I)求拋物線與圓的方程;
(II)過且斜率為的直線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在原點,焦點F在軸上,離心率,點在橢圓C上.
(1)求橢圓的標準方程;
(2)若斜率為的直線交橢圓兩點,且、、成等差數(shù)列,點M(1,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標系中,已知橢圓的離心率,且橢圓C上一點到點Q的距離最大值為4,過點的直線交橢圓于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,圓,動圓與已知兩圓都外切.
(1)求動圓的圓心的軌跡的方程;
(2)直線與點的軌跡交于不同的兩點、的中垂線與軸交于點,求點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
(Ⅰ)求的值;
(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在坐標原點,右準線為,離心率為.若直線與橢圓交于不同的兩點、,以線段為直徑作圓.
(1)求橢圓的標準方程;
(2)若圓軸相切,求圓被直線截得的線段長.

查看答案和解析>>

同步練習(xí)冊答案