已知橢圓)過點(diǎn)(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過定點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線斜率的取值范圍.

(Ⅰ)(Ⅱ)

解析試題分析:(Ⅰ)由題意得
結(jié)合,解得
所以,橢圓的方程為.
(Ⅱ) 設(shè),則.
設(shè)直線的方程為: 得
.
所以



解得.
故.為所求.
考點(diǎn):橢圓方程性質(zhì)及橢圓與直線的位置關(guān)系
點(diǎn)評:有關(guān)于橢圓與直線相交問題,將橢圓方程與直線方程聯(lián)立方程組,利用韋達(dá)定理計(jì)算是常用的轉(zhuǎn)化思路,平面解析幾何中涉及到的向量通常用向量的坐標(biāo)運(yùn)算來化簡,本題中為銳角轉(zhuǎn)化為向量夾角是銳角,進(jìn)而用向量的數(shù)量積來表示

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,左端點(diǎn)為
(1)求橢圓的方程;
(2)過橢圓的右焦點(diǎn)且斜率為的直線被橢圓截的弦長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  
(I)求橢圓C1的方程;  (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,又知此拋物線上一點(diǎn)A(4,m)到焦點(diǎn)的距離為6.  
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點(diǎn)A、B,且AB中點(diǎn)橫坐標(biāo)為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,的兩個(gè)頂點(diǎn)、的坐標(biāo)分別是(-1,0),(1,0),點(diǎn)的重心,軸上一點(diǎn)滿足,且.
(1)求的頂點(diǎn)的軌跡的方程;
(2)不過點(diǎn)的直線與軌跡交于不同的兩點(diǎn)、,當(dāng)時(shí),求的關(guān)系,并證明直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過作與軸垂直的直線與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),且
(1)求橢圓的方程;
(2)若過點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足
為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
在平面內(nèi),已知橢圓的兩個(gè)焦點(diǎn)為,橢圓的離心率為 ,點(diǎn)是橢圓上任意一點(diǎn), 且
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)以橢圓的上頂點(diǎn)為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形,這樣的等腰直角三角形是否存在?若存在請說明有幾個(gè)、并求出直角邊所在直線方程?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),
。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點(diǎn)C,使得三角形ABC是正三角形? 若存在,求出點(diǎn)C的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案