在極坐標系中,直線?1的方程是ρsin(θ+
π
4
)=
2
2
,以極點為原點,以極軸為x軸的正半軸建立直角坐標系,在直角坐標系中,直線?2的方程是3x+ky=1.如果直線?1與?2垂直,則常數(shù)k=
 
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:把極坐標方程化為直角坐標方程,再利用兩條直線垂直的條件求出k的值.
解答: 解:把直線?1的方程是ρsin(θ+
π
4
)=
2
2
化為直角坐標方程為
2
2
x+
2
2
y=
2
2
,即 x+y-1=0.
再根據(jù)直線?2的方程是3x+ky=1,直線?1與?2垂直,則-1×
-3
k
=-1,求得 k=-3,
故答案為:-3.
點評:本題主要考查把極坐標方程化為直角坐標方程的方法,兩條直線垂直的條件,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知條件p:{x|x2+x-6=0},條件q:{x|mx+1=0},且q是p的充分不必要條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且滿足:a3=6,a5+a7=24.
(1)求an和Sn;
(2)設bn=(
2
 an,求數(shù)列{bn}的前項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=2,an+1=an2-nan+1,令bn=
1
a n•a n+1
,則數(shù)列{bn}的前n項和Sn=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,BC=2,∠B=60°,當S△ABC=
3
2
時,sinC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x+|x-a|的最小值為3a+2,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列函數(shù):
①f(x)=x 
1
2
;
②f(x)=x2
③f(x)=2x;
④f(x)=log2x.
則滿足關系式f′(2)>f(3)-f(2)>f′(3)的函數(shù)的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
14
-
y2
2
=1的左,右焦點分別為F1,F(xiàn)2,P為雙曲線左支上一點,M為雙曲線漸近線上一點(漸近線的斜率大于零),則|PF2|+|PM|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=xlnx-ax,g(x)=-x2-2,對一切x∈(0,+∞),f(x)≥g(x)恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案