8.現(xiàn)從某校高三年級(jí)隨機(jī)抽50名考生2015年高考英語聽力考試的成績(jī),發(fā)現(xiàn)全部介于[6,30]之間,將成績(jī)按如下方式分成6組:第1組[6,10),第2組[10,14),…,第6組[26,30],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)估算該校50名考生成績(jī)的眾數(shù)和中位數(shù);
(Ⅱ)求這50名考生成績(jī)?cè)赱22,30]內(nèi)的人數(shù).

分析 (Ⅰ)由頻率分布直方圖,能求出該校50名考生聽力成績(jī)的眾數(shù)和中位數(shù).
(Ⅱ)由頻率分布直方圖求出后兩組頻率及人數(shù),由此能求出該校這50名考生聽力成績(jī)?cè)赱22,30]的人數(shù).

解答 解:(Ⅰ)由頻率分布直方圖知,
該校這50名考生聽力成績(jī)的眾數(shù)為$\frac{14+18}{2}=16$…(2分)
中位數(shù)為$14+\frac{0.5-0.02×4-0.05×4}{0.08}=16.75$…(6分)
(Ⅱ)由頻率分布直方圖知,后兩組頻率為(0.03+0.02)×4=0.2
人數(shù)為0.2×50=10,
即該校這50名考生聽力成績(jī)?cè)赱22,30]的人數(shù)為10人.…(12分)

點(diǎn)評(píng) 本題考查眾數(shù)、中位數(shù)、頻數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意頻率分布直方圖的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.復(fù)數(shù)$\frac{1-2i}{2+i}$(i為虛數(shù)單位)的虛部為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)兩條直線的方程分別為x+y+a=0,x+y+b=0,已知a、b是關(guān)于x的方程x2+x-2=0的兩個(gè)實(shí)數(shù)根,則這兩條直線之間的距離為( 。
A.2$\sqrt{3}$B.$\sqrt{2}$C.2$\sqrt{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=cos(2x+$\frac{π}{4}$),x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)函數(shù)f(x)的圖象是由函數(shù)y=cos(x+$\frac{π}{4}$)的圖象經(jīng)過怎樣變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.2015年國(guó)慶節(jié)期間,甲、乙、丙三位打工者計(jì)劃回老家陪伴父母,甲、乙、丙回老家的概率分別為$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$,假設(shè)三人的行動(dòng)相互之間沒有影響,那么這段時(shí)間至少有1人回老家的概率為( 。
A.$\frac{3}{4}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.對(duì)于總數(shù)為N的一批零件,抽取一個(gè)容量為30的樣本,若每個(gè)零件被抽到的可能性均為25%,則N=(  )
A.120B.150C.200D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)A={小于90°的角},B={銳角},C={第一象限角},D={小于90°而不小于0°的角},那么有(  )
A.B?C?AB.B?A?CC.D?(A∩C)D.C∩D=B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)矩陣$[\begin{array}{l}{a}&{0}\\{2}&{1}\end{array}]$ 的一個(gè)特征值為2,若曲線C在矩陣M變換下的方程為x2+y2=1,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.樣本(x1,x2,…,xn)的平均數(shù)為$\overline{x}$,樣本(y1,y2,…,ym)的平均數(shù)為$\overline{y}$($\overline{x}$≠$\overline{y}$).若樣本(x1,x2,…,xn,y1,y2,…,ym)的平均數(shù)$\overline{z}$=a$\overline{x}$+b$\overline{y}$,并且$\frac{1}{a}+\frac{1}$>$\frac{1}{2}$m2+m恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-2)∪[4,+∞)B.(-∞,-4]∪[2,+∞)C.(-2,4)D.(-4,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案