10.集合M={(x,y)|x2+y2=1},N={(x,y)|x2+y2=4},集合M與N的關(guān)系是( 。
A.M=NB.M⊆N
C.N⊆MD.M,N不存在包含關(guān)系

分析 由題意,M表示以(0,0)為圓心,1為半徑的圓;N表示以(0,0)為圓心,2為半徑的圓,即可得出結(jié)論.

解答 解:由題意,M表示以(0,0)為圓心,1為半徑的圓;N表示以(0,0)為圓心,2為半徑的圓,
∴M,N不存在包含關(guān)系,
故選D.

點(diǎn)評(píng) 本題考查集合的表示與含義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(-3,4),求$\overrightarrow a$+$\overrightarrow b$,$\overrightarrow a$-$\overrightarrow b$,3$\overrightarrow a$+4$\overrightarrow b$的坐標(biāo).
(2)已知單位向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夾角為60°,$\overrightarrow a$=$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,$\overrightarrow b$=$\overrightarrow{e_2}$-2$\overrightarrow{e_1}$,求$\overrightarrow a•\overrightarrow b$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U=R,集合A={x|x2-x<0,x∈R},B={0,1},則( 。
A.A∪B=AB.A∩B=BC.UB=AD.B⊆∁UA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.兩等角的一組對(duì)應(yīng)邊平行,則另一組對(duì)應(yīng)邊的位置關(guān)系為平行、相交或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知:如圖所示,直線AB:$\sqrt{3}x+y-2\sqrt{3}=0$與圓O:x2+y2=4相交于點(diǎn)A,B,求證:△AOB是等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x-1|;
(1)用分段函數(shù)表示出f(x)的解析式;
(2)畫出f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.拋物線2y2+x=0的焦點(diǎn)坐標(biāo)是:(-$\frac{1}{8}$,0),準(zhǔn)線方程是:x=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過拋物線y2=16x的焦點(diǎn)作直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),如果x1+x2=6,那么|AB|=(  )
A.8B.10C.14D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,直線x-y+2=0截以原點(diǎn)O為圓心的圓所得的弦長(zhǎng)為2$\sqrt{2}$,
(1)求圓O的方程;
(2)若直線l與圓O切于第一象限,且與坐標(biāo)軸交于點(diǎn)D,E,求|DE|的最小值及此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案