某中學的數(shù)學測試中設置了“數(shù)學與邏輯”和“閱讀與表達”兩個內(nèi)容,成績分為A、B、C、D、E五個等級.某班考生兩科的考試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“數(shù)學與邏輯”科目的成績等級為B的考生有10人.

(1)求該班考生中“閱讀與表達”科目中成績等級為A的人數(shù);
(2)若等級A、B、C、D、E分別對應5分、4分、3分、2分、1分,該考場共10人得分大于7分,其中2人10分,2人9分,6人8分,從這10人中隨機抽取2人,求2人成績之和ξ的分布列.
考點:離散型隨機變量的期望與方差,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(1)先求出該班總人數(shù),再計算“閱讀與表達”科目中成績等級為A的人數(shù).
(2)ξ的值可以為16,17,18,19,20,分別求出相對應的概率,由此能求出ξ的分布列.
解答: 解:(1)由題意得該班總人數(shù)是10÷0.25=40人….(1分)
“閱讀與表達”科目中成績等級為A的人數(shù)為
40×(1-0.375-0.375-0.15-0.025)
=40×0.075=3人.…(3分)
(2)ξ的值可以為16,17,18,19,20,
P(ξ=16)=
C
2
6
C
2
10
=
15
45
,P(ξ=17)=
C
1
6
C
1
2
C
2
10
=
12
45

P(ξ=18)=
C
1
6
C
1
2
+C
2
2
C
2
10
=
13
45
,P(ξ=19)=
C
1
2
C
2
2
C
2
10
=
4
45

P(ξ=20)=
C
2
2
C
2
10
=
1
45
,…(8分)
∴ξ的分布列為
ξ 16 17 18 19 20
P
1
3
4
15
13
45
4
45
1
45
…..(12分)
點評:本題考查頻率直方圖的應用,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的相鄰兩項an,an+1是x的方程x2-(1+2n)x+bn=0(n∈N*)的兩根且a1=2
(1)求證:數(shù)列{an-n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

據(jù)IEC(國際電工委員會)調查顯示,小型風力發(fā)電項目投資較少,且開發(fā)前景廣闊,但受風力自然資源影響,項目投資存在一定風險.根據(jù)測算,風能風區(qū)分類標準如下:
風能分類 一類風區(qū) 二類風區(qū)
平均風速m/s 8.5~10 6.5~8.5
假設投資A項目的資金為x(x≥0)萬元,投資B項目資金為y(y≥0)萬元,調研結果是:未來一年內(nèi),位于一類風區(qū)的A項目獲利30%的可能性為0.6,虧損20%的可能性為0.4;位于二類風區(qū)的B項目獲利35%的可能性為0.6,虧損10%的可能性是0.1,不賠不賺的可能性是0.3.
(1)記投資A,B項目的利潤分別為ξ和η,試寫出隨機變量ξ與η的分布列和期望Eξ,Eη;
(2)某公司計劃用不超過100萬元的資金投資于A,B項目,且公司要求對A項目的投資不得低于B項目,根據(jù)(1)的條件和市場調研,試估計一年后兩個項目的平均利潤之和z=Eξ+Eη的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點為F(1,0),離心率為
2
2
.設P是橢圓C長軸上的一個動點,過點P且斜率為1的直線l交橢圓于A,B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求|PA|2+|PB|2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,某旅游景點有一座風景秀麗的山峰,山上有一條筆直的山路BC和一條索道AC,小王和小李打算不坐索道,而是花2個小時的時間進行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1(千米),AC=3(千米).假設小王和小李徒步攀登的速度為每小時1200米,請問:兩位登山愛好者能否在2個小時內(nèi)徒步登上山峰.(即從B點出發(fā)到達C點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=ax2-2ax+2lnx,g(x)=f(x)-2x.
(Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)討論g(x)的單調性;
(Ⅲ)當a>1時,若函數(shù)h(x)=g(x)+5+
1
a
有三個不同的零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知a2=-7,S6=-24.
(1)求等差數(shù)列{an}的前n項和Sn;
(2)當n為何值時,數(shù)列{
Sn+100
n
}有最小項,并求出最小項的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在雙曲線x2-y2=4上有一點P,F(xiàn)1、F2是雙曲線的兩個焦點,且∠F1PF2=90°,求△F1PF2的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結果中隨機抽取10天的數(shù)據(jù),制表如下:
甲公司某員工A 乙公司某員工B
3 9 6 5 8 3 3 2 3 4 6 6 6 7 7
0 1 4 4 2 2 2
每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7元.
(Ⅰ)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);
(Ⅱ)為了解乙公司員工B的每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為X(單位:元),求X的分布列和數(shù)學期望;
(Ⅲ)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務費.

查看答案和解析>>

同步練習冊答案