設f(x)為周期是2的奇函數(shù),當0<x<1時,f(x)=x(x+1),則當5<x<6時,f(x)的表達式為(  )
分析:利用函數(shù)是奇函數(shù),可由x∈(0,1)時的解析式求x∈(-1,0)時的解析式,利用周期性求得x∈(5,6)時,f(x)表達式.
解答:解:因為x∈(0,1)時,f(x)=x(x+1),
設x∈(-1,0)時,-x∈(0,1),
∴f(-x)=-x(-x+1),
∵f(x)為定義在R上的奇函數(shù)
∴f(x)=-f(-x)=x(-x+1),
∴當x∈(-1,0)時,f(x)=x(-x+1),
所以x∈(5,6)時,x-6∈(-1,0),
∵f(x)為周期是2的函數(shù),
∴f(x)=f(x-6)=(x-6)(6-x+1)=(x-6)(7-x),
故選D.
點評:本題綜合考查函數(shù)奇偶性與周期性知識的運用,把要求區(qū)間上的問題轉(zhuǎn)化到已知區(qū)間上求解,是解題的關鍵,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想方法.屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)為定義域為R的函數(shù),對任意x∈R,都滿足:f(x+1)=f(x-1),f(1-x)=f(1+x),且當x∈[0,1]時,f(x)=3x-3-x
(1)請指出f(x)在區(qū)間[-1,1]上的奇偶性、單調(diào)區(qū)間、最大(小)值和零點,并運用相關定義證明你關于單調(diào)區(qū)間的結(jié)論;
(2)試證明f(x)是周期函數(shù),并求其在區(qū)間[2k-1,2k](k∈Z)上的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設f(x)為周期是2的奇函數(shù),當0<x<1時,f(x)=x(x+1),則當5<x<6時,f(x)的表達式為


  1. A.
    (x-5)(x-4)
  2. B.
    (x-6)(x-5)
  3. C.
    (x-6)(5-x)
  4. D.
    (x-6)(7-x)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省沈陽二中等重點中學協(xié)作體高考預測數(shù)學試卷06(理科)(解析版) 題型:選擇題

設f(x)為周期是2的奇函數(shù),當0<x<1時,f(x)=x(x+1),則當5<x<6時,f(x)的表達式為( )
A.(x-5)(x-4)
B.(x-6)(x-5)
C.(x-6)(5-x)
D.(x-6)(7-x)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設f(x)為周期是2的奇函數(shù),當0<x<1時,f(x)=x(x+1),則當5<x<6時,f(x)的表達式為( 。
A.(x-5)(x-4)B.(x-6)(x-5)C.(x-6)(5-x)D.(x-6)(7-x)

查看答案和解析>>

同步練習冊答案