【題目】某工廠有100名工人接受了生產(chǎn)1000臺(tái)某產(chǎn)品的總?cè)蝿?wù),每臺(tái)產(chǎn)品由9個(gè)甲型裝置和3個(gè)乙型裝置配套組成,每個(gè)工人每小時(shí)能加工完成1個(gè)甲型裝置或3個(gè)乙型裝置.現(xiàn)將工人分成兩組分別加工甲型和乙型裝置.設(shè)加工甲型裝置的工人有x人,他們加工完甲型裝置所需時(shí)間為小時(shí),其余工人加工完乙型裝置所需時(shí)間為小時(shí),則生產(chǎn)1000臺(tái)某產(chǎn)品的總加工時(shí)間y是一個(gè)關(guān)于x的函數(shù)。

1)求y關(guān)于x的函數(shù)解析式;

2)如何分配工人才能使生產(chǎn)1000臺(tái)某產(chǎn)品的總加工時(shí)間最少?

【答案】1;(2)當(dāng)加工甲裝置工人為時(shí),乙裝置工人時(shí),總加工時(shí)間最少.

【解析】

11000臺(tái)產(chǎn)品中共有9000個(gè)甲型裝置,3000個(gè)乙型裝置,因此人加工完甲型裝置的時(shí)間為,而剩下的個(gè)加工完乙型裝置的時(shí)間為,兩者相加即得總的加工時(shí)間.注意;

2)從的表達(dá)式中可以看出,通過湊配法湊出定值后可求得最小值.,然后應(yīng)用基本不等式可求得最小值.

(1)

2

,

當(dāng)且僅當(dāng)時(shí),即時(shí)等號(hào)成立,

所以,當(dāng)加工甲裝置工人為時(shí),乙裝置工人時(shí),總加工時(shí)間最少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,,點(diǎn)的中點(diǎn).

(1)求證:直線平面;

(2)求證:平面平面

(3)求直線與平面的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間、值域;

2)求函數(shù)在區(qū)間的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生一次考試后數(shù)學(xué)、物理兩個(gè)科目的成績情況,從中隨機(jī)抽取了25位考生的成績進(jìn)行統(tǒng)計(jì)分析.25位考生的數(shù)學(xué)成績已經(jīng)統(tǒng)計(jì)在莖葉圖中,物理成績?nèi)缦拢?/span>

)請根據(jù)數(shù)據(jù)在答題卡的莖葉圖中完成物理成績統(tǒng)計(jì);

)請根據(jù)數(shù)據(jù)在答題卡上完成數(shù)學(xué)成績的頻數(shù)分布表及數(shù)學(xué)成績的頻率分布直方圖;

數(shù)學(xué)成績分組

[5060

[60,70

[70,80

[80,90

[90,100

[100,110

[110,120]

頻數(shù)

)設(shè)上述樣本中第i位考生的數(shù)學(xué)、物理成績分別為xi,yii=1,2,3,,25).通過對樣本數(shù)據(jù)進(jìn)行初步處理發(fā)現(xiàn):數(shù)學(xué)、物理成績具有線性相關(guān)關(guān)系,得到:=86,=64,xi-)(yi-=4698xi-2=5524,≈0.85.求y關(guān)于x的線性回歸方程,并據(jù)此預(yù)測當(dāng)某考生的數(shù)學(xué)成績?yōu)?/span>100分時(shí),該考生的物理成績(精確到1分).

附:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為:=,=-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)在點(diǎn)處與軸相切

(1)求的值,并求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)數(shù)學(xué)學(xué)院擬從往年的智慧隊(duì)和理想隊(duì)中選拔4名大學(xué)生組成志愿者招募宣傳隊(duì).往年的智慧對和理想隊(duì)的構(gòu)成數(shù)據(jù)如下表所示,現(xiàn)要求選出的4名大學(xué)生中兩隊(duì)中的大學(xué)生都要有.

(1)求選出的4名大學(xué)生僅有1名女生的概率;

(2)記選出的4名大學(xué)生中女生的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醬油廠對新品種醬油進(jìn)行了定價(jià),在各超市得到售價(jià)與銷售量的數(shù)據(jù)如下表:

單價(jià)(元)

5

5.2

5.4

5.6

5.8

6

銷量(瓶)

9.0

8.4

8.3

8.0

7.5

6.8

(1)求售價(jià)與銷售量的回歸直線方程;( ,

(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/瓶,為使工廠獲得最大利潤(利潤=銷售收入成本),該產(chǎn)品的單價(jià)應(yīng)定為多少元?

相關(guān)公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在上海高考改革方案中,要求每位考生必須在物理、化學(xué)、生物、政治、歷史、地理六門學(xué)科中選擇三門參加等級(jí)考試,受各因素影響,小李同學(xué)決定選擇物理,并在生物和地理中至少選擇一門.

1)小李同學(xué)共有多少種不同的選科方案?

2)若小吳同學(xué)已確定選擇生物和地理,求小吳同學(xué)與小李同學(xué)選科方案相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級(jí)有學(xué)生480名,對他們進(jìn)行政治面貌和性別的調(diào)查,其結(jié)果如下:

性別

團(tuán)員

群眾

80

180

1)若隨機(jī)抽取一人,是團(tuán)員的概率為,求,;

2)在團(tuán)員學(xué)生中,按性別用分層抽樣的方法,抽取一個(gè)樣本容量為5的樣本,然后在這5名團(tuán)員中任選2人,求兩人中至多有1個(gè)女生的概率.

查看答案和解析>>

同步練習(xí)冊答案