【題目】在平面直角坐標系中,設(shè)橢圓()的離心率是e,定義直線為橢圓的“類準線”,已知橢圓C的“類準線”方程為,長軸長為4.
(1)求橢圓C的方程;
(2)點P在橢圓C的“類準線”上(但不在y軸上),過點P作圓O:的切線l,過點O且垂直于的直線l交于點A,問點A是否在橢圓C上?證明你的結(jié)論.
【答案】(1);(2)在,證明見解析.
【解析】
(1)由題意列關(guān)于a,b,c的方程,聯(lián)立方程組求得,,,則橢圓方程可求;
(2)設(shè)(),當時和時,求出A的坐標,代入橢圓方程驗證知,A在橢圓上,當時,求出過點O且垂直于的直線與橢圓的交點,寫出該交點與P點的連線所在直線方程,由原點到直線的距離等于圓的半徑說明直線是圓的切線,從而說明點A在橢圓C上.
(1)由題意得:,,又,
聯(lián)立以上可得:,,.∴橢圓C的方程為;
(2)如圖,由(1)可知,橢圓的類準線方程為,不妨取,
設(shè)(),則,
∴過原點且與垂直的直線方程為,
當時,過P點的圓的切線方程為,
過原點且與垂直的直線方程為,聯(lián)立,解得:,
代入橢圓方程成立;
同理可得,當時,點A在橢圓上;
當時,聯(lián)立,
解得,,
所在直線方程為.
此時原點O到該直線的距離,
∴說明A點在橢圓C上;同理說明另一種情況的A也在橢圓C上.
綜上可得,點A在橢圓C上.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在上的單調(diào)性;
(2)是否存在正實數(shù),使與的圖象有唯一一條公切線,若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有曲池,上中周二丈,外周四丈,廣一丈,下中周一丈四尺,外周二丈四尺,廣五尺,深一丈,問積幾何?”其意思為:“今有上下底面皆為扇形的水池,上底中周2丈,外周4丈,寬1丈;下底中周1丈4尺,外周長2丈4尺,寬5尺;深1丈.問它的容積是多少?”則該曲池的容積為( )立方尺(1丈=10尺,曲池:上下底面皆為扇形的土池,其容積公式為[(2×上寬+下寬)(2×下寬+上寬)]×深)
A.B.1890C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費對年銷售量(單位:)的影響.該公司對近5年的年宣傳費和年銷售量數(shù)據(jù)進行了研究,發(fā)現(xiàn)年宣傳費(萬元)和年銷售量(單位:)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
(萬元) | 2 | 4 | 5 | 3 | 6 |
(單位:) | 2.5 | 4 | 4.5 | 3 | 6 |
(1)根據(jù)表中數(shù)據(jù)建立年銷售量關(guān)于年宣傳費的回歸方程;
(2)已知這種產(chǎn)品的年利潤與,的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問題:
①當年宣傳費為10萬元時,年銷售量及年利潤的預(yù)報值是多少?
②估算該公司應(yīng)該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.
附:問歸方程中的斜率和截距的最小二乘估計公式分別為,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若實數(shù)為整數(shù),且對任意的時,都有恒成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】惰性氣體分子為單原子分子,在自由原子情形下,其電子電荷分布是球?qū)ΨQ的.負電荷中心與原子核重合,但如兩個原子接近,則彼此能因靜電作用產(chǎn)生極化(正負電荷中心不重合),從而導(dǎo)致有相互作用力,這稱為范德瓦爾斯相互作用.今有兩個相同的惰性氣體原子,它們的原子核固定,原子核正電荷的電荷量為,這兩個相距為的惰性氣體原子組成體系的能量中有靜電相互作用能,其中為靜電常量,,分別表示兩個原子負電中心相對各自原子核的位移,且和都遠小于,當遠小于1時,,則的近似值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標原點,拋物線的焦點坐標為,點,在該拋物線上且位于軸的兩側(cè),.
(Ⅰ)證明:直線過定點;
(Ⅱ)以,為切點作的切線,設(shè)兩切線的交點為,點為圓上任意一點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某“雙一流A類”大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機抽取了100人進行問卷調(diào)查,其中一項是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:
(1)為感謝同學(xué)們對這項調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈送一份禮品,并從這6人中再抽取2人,各贈送某款智能手機1部,求獲贈智能手機的2人月薪都不低于1.75萬元的概率;
(2)同一組數(shù)據(jù)用該區(qū)間的中點值作代表.
(i)求這100人月薪收入的樣本平均數(shù)和樣本方差;
(ii)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會,并收取一定的活動費用,有兩種收費方案:
方案一:設(shè),月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收到600元,月薪落在區(qū)間右側(cè)的每人收取800元.
方案二:按每人一個月薪水的3%收;用該校就業(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進行估算,哪一種收費方案能收到更多的費用?
參考數(shù)據(jù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com