某城市要建成宜商、宜居的國際化新城,該城市的東城區(qū)、西城區(qū)分別引進(jìn)8個廠家,現(xiàn)對兩個區(qū)域的16個廠家進(jìn)行評估,綜合得分情況如莖葉圖所示.
(1)根據(jù)莖葉圖判斷哪個區(qū)域廠家的平均分較高;
(2)規(guī)定綜合得分85分以上(含85分)為優(yōu)秀廠家,若從該兩個區(qū)域各選一個優(yōu)秀廠家,求得分差距不超過5分的概率.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率,莖葉圖
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)莖葉圖求出東城區(qū)與西城區(qū)的平均分即可得出結(jié)論;
(Ⅱ)求出從兩個區(qū)域各選一個優(yōu)秀廠家的所有基本事件數(shù),再求出滿足得分差距不超過5的事件數(shù),即可求出概率.
解答: 解:(Ⅰ)根據(jù)莖葉圖知,東城區(qū)的平均分為
.
x東
=
1
8
(780+790+790+88+88+89+93+94)=86,
西城區(qū)的平均分為
.
x西
=
1
8
(72+79+81+83+84+85+94+94)=84,
∴東城區(qū)的平均分較高;
(Ⅱ)從兩個區(qū)域各選一個優(yōu)秀廠家,
所有的基本事件數(shù)為5×3=15種,
滿足得分差距不超過5的事件(88,85)(88,85)(89,85)(89,94)(89,94)(93,94)(93,94)(94,94)(94,94)共9種,
∴滿足條件的概率為P=
9
15
=
3
5
點(diǎn)評:本題通過莖葉圖考查了平均數(shù)以及古典概型的概率問題,解題時應(yīng)列出基本事件,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在海島上有一個雷達(dá)觀測站A,某時刻測得一艘勻速直線行駛的船只位于點(diǎn)A北偏東45°且與點(diǎn)A相距80
2
海里的位置B,經(jīng)過40分鐘又測得該船已行駛到點(diǎn)A北偏東45°+θ(其中sinθ=
26
26
,θ為銳角)且與A點(diǎn)相距20
13
海里的位置C.
(1)求該船的行駛速度(單位:海里/小時);
(2)若該船始終不改變航行的方向,經(jīng)過多長時間后,該船從點(diǎn)C到達(dá)海島正東方向的D點(diǎn)處.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:等差數(shù)列{an}的前n項(xiàng)和為Sn,若公差d=-2,S20=0.
(Ⅰ)求通項(xiàng)an及Sn;
(Ⅱ)設(shè){bn-an}是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D、E分別是BC、AP的中點(diǎn).求異面直線AC與ED所成的角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:m2-m<0,命題q:
y2
2
+
x2
1+4m2
=1表示焦點(diǎn)在y軸上的橢圓.
(Ⅰ)若p∧q是真命題,求實(shí)數(shù)m的取值范圍;
(Ⅱ) 若橢圓
y2
2
+
x2
1+4m2
=1的焦點(diǎn)到雙曲線
x2
2
-
y2
2
=1的漸近線的距離為
2
2
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前6項(xiàng)如下表所示,其中奇數(shù)項(xiàng)成等差數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列.
n123456
an123458
(1)寫出數(shù)列{an}的通項(xiàng)公式(不要求推理過程);
(2)當(dāng)n是偶數(shù)時,求Sn=a1a2+a3a4+a5a6+…+an-1an;
(3)當(dāng)n是奇數(shù)時,求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x+1)=
1
f(x)+1
,且當(dāng)x∈(0,1]時,f(x)=x,g(x)=m(x+3),若方程f(x)=g(x)在區(qū)間(-1,1]上有兩個不同的實(shí)根,則實(shí)數(shù)m的取值范圍是( 。
A、(0,
1
4
]
B、(0,
1
3
]
C、(
1
4
,1]
D、(
1
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)是R上的奇函數(shù),且當(dāng)x<0時,g(x)=-ln(1-x),設(shè)函數(shù)f(x)=
x3
 ,(x≤0)
g(x)
 ,(x>0)
,若f(x2-x)<f(6-2x),則實(shí)數(shù)x的取值范圍是( 。
A、(-∞,-3)∪(2,+∞)
B、(-∞,-2)∪(3,+∞)
C、(-2,3)
D、(-3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位擬安排6名職工在春節(jié)放假期間(正月初一、初二、初三)值班,每天安排2人,每人值班1天,若6位職工中的甲不值正月初一,乙不值正月初三,則不同的安排方法共有
 
種.

查看答案和解析>>

同步練習(xí)冊答案