【題目】已知數(shù)列{an}前n項和為Sn=﹣n2+12n.
(1)求{an}的通項公式;
(2)求數(shù)列{|an|}的前10項和T10 .
【答案】
(1)解:當n=1時,a1=S1=12×1﹣12=11;當n≥2時,an=Sn﹣Sn﹣1=(12n﹣n2)﹣[12(n﹣1)﹣(n﹣1)2]=13﹣2n.
經(jīng)驗證當n=1時,a1=11也符合13﹣2n的形式
(2)解:數(shù)列{an}的通項公式為an=13﹣2n,
∵當n≤6時,an>0,當n≥7時,an<0,
∴T10=a1+…+a6﹣a7﹣a8﹣a9﹣a10=2S6﹣S10=52
【解析】(1)求出a1 , 利用n≥2時,an=Sn﹣Sn﹣1 , 求出an , 驗證n=1時滿足通項公式,即可求得數(shù)列{an}的通項公式(2)由(1)判斷哪些項為正,哪些項為負,然后求解Tn .
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關系),還要掌握數(shù)列的通項公式(如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式)的相關知識才是答題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (a>0,a≠1).
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并給出證明;
(3)當x∈(n,a﹣2)時,函數(shù)f(x)的值域是(1,+∞),求實數(shù)a與n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知極點與直角坐標系原點重合,極軸與軸的正半軸重合,曲線的極坐標方程為.
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)已知直線的參數(shù)方程為(為參數(shù)),直線交曲線于兩點,若恰好為線段的三等分點,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知離心率為的橢圓:經(jīng)過點,且是頂點均不與橢圓四個頂點重合的橢圓一個內(nèi)接四邊形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,試判斷的面積是否為定值?若為定值,求出該定值;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為了解2017屆高三學生的性別和喜愛游泳是否有關,對100名高三學生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人,抽到喜歡游泳的學生的概率為.
(Ⅰ)請將上述列聯(lián)表補充完整;
(Ⅱ)判斷是否有99.9%的把握認為喜歡游泳與性別有關?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,為上一點,、為橢圓的兩焦點,的周長為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設橢圓,曲線的切線交橢圓于、兩點,試證:的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是正數(shù)組成的數(shù)列, ,且點 在函數(shù)的圖象上.
(1)求數(shù)列的通項公式;
(2)若列數(shù)滿足,,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為響應國家擴大內(nèi)需的政策,某廠家擬在2016年舉行某一產(chǎn)品的促銷獲得,經(jīng)調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元滿足(為常數(shù)).如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件.已知2016年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(成產(chǎn)投入成本包括生產(chǎn)固定投入和生產(chǎn)再投入兩部分).
(1)求常數(shù),并將該廠家2016年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);
(2)該廠家2016年的年促銷費用投入多少萬元時,廠家利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com