【題目】已知直線l與拋物線交于點A,B兩點,與x軸交于點M,直線OA,OB的斜率之積為.

(1)證明:直線AB過定點;

(2)以AB為直徑的圓P交x軸于E,F(xiàn)兩點,O為坐標原點,求|OE||OF|的值.

【答案】(1)(4,0) ;(2)8.

【解析】

(1)設出直線AB的方程,聯(lián)立拋物線得到關于y的一元二次方程,根據(jù)斜率之積為,結(jié)合韋達定理代入化簡即可得到AB過定點。

(2)表示出以A、B為直徑的圓的方程,設出E、F的坐標,結(jié)合韋達定理即可表示出,進而求得的值。

(1)設直線,A(x1,y1),B(x2,y2)

消去得,

,那么滿足Δ=4m2+8n>0

,即AB過定點(4,0),

(2)∵以為直徑端點的圓的方程為

,則是方程

的兩個實根

∴有

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分13分)

某食品廠進行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工費為元(為常數(shù),且,設該食品廠每公斤蘑菇的出廠價為元(),根據(jù)市場調(diào)查,銷售量成反比,當每公斤蘑菇的出廠價為30元時,日銷售量為100公斤.

)求該工廠的每日利潤元與每公斤蘑菇的出廠價元的函數(shù)關系式;

)若,當每公斤蘑菇的出廠價為多少元時,該工廠的利潤最大,并求最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設斜率為k(k>0)的直線l與橢圓C: + =1交于A、B兩點,且OA⊥OB.

(Ⅰ)求直線l在y軸上的截距(用k表示);
(Ⅱ)求△AOB面積取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C: + =1(a>b>0)的離心率為 ,過左焦點任作直線l,交橢圓的上半部分于點M,當l的斜率為 時,|FM|=
(1)求橢圓C的方程;
(2)橢圓C上兩點A,B關于直線l對稱,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解下列關于x的不等式:

(1); (2)x2-ax-2a2≤0(a∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,過其右焦點F且與x軸垂直的直線交橢圓C于P,Q兩點,橢圓C的右頂點為R,且滿足.

(1)求橢圓C的方程;

(2)若斜率為k(其中)的直線l過點F,且與橢圓交于點A,B,弦AB的中點為M,直線OM與橢圓交于點C,D,求四邊形ACBD面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點分別為 交于O,A兩點(O為坐標原點),且

求拋物線的方程;

過點O的直線交的下半部分于點M,交的左半部分于點N,點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2 sin(ax﹣ )cos(ax﹣ )+2cos2(ax﹣ )(a>0),且函數(shù)的最小正周期為
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,若方程f(f(x))=a(a>0)恰有兩個不相等的實根x1 , x2 , 則e e 的最大值為(
A.
B.2(ln2﹣1)
C.
D.ln2﹣1

查看答案和解析>>

同步練習冊答案