【題目】平面直角坐標系xOy中,曲線C:(x﹣1)2+y2=1.直線l經(jīng)過點P(m,0),且傾斜角為 .以O(shè)為極點,以x軸正半軸為極軸,建立坐標系.
(Ⅰ)寫出曲線C的極坐標方程與直線l的參數(shù)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,且|PA||PB|=1,求實數(shù)m的值.
【答案】解:(Ⅰ)曲線C:(x﹣1)2+y2=1.展開為:x2+y2=2x,可得ρ2=2ρcosθ,即曲線C的極坐標方程為ρ=2cosθ. 直線l的參數(shù)方程為: ,(t為參數(shù)).
(Ⅱ)設(shè)A,B兩點對應的參數(shù)分別為t1 , t2 . 把直線l的參數(shù)方程代入x2+y2=2x,可得:t2+( )t+m2﹣2m=0,∴t1t2=m2﹣2m.
∵|PA||PB|=1,∴|m2﹣2m|=1,解得m=1或1±
【解析】(Ⅰ)曲線C:(x﹣1)2+y2=1.展開為:x2+y2=2x,把 代入可得曲線C的極坐標方程.直線l的參數(shù)方程為: ,(t為參數(shù)). (Ⅱ)設(shè)A,B兩點對應的參數(shù)分別為t1 , t2 . 把直線l的參數(shù)方程圓的方程可得:t2+( )t+m2﹣2m=0,利用|PA||PB|=1,可得|m2﹣2m|=1,解得m即可得出.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩位學生參加數(shù)學競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次.得到甲、乙兩位學生成績的莖葉圖.
(1)現(xiàn)要從中選派一人參加數(shù)學競賽,對預賽成績的平均值和方差進行分析,你認為哪位學生的成績更穩(wěn)定?請說明理由;
(2)求在甲同學的8次預賽成績中,從不小于80分的成績中隨機抽取2個成績,列出所有結(jié)果,并求抽出的2個成績均大于85分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義“規(guī)范01數(shù)列”如下:共有項,其中項為0,項為1,且對任意,,,…,中0的個數(shù)不少于1的個數(shù).若,則不同的“規(guī)范01數(shù)列”共有( )
A. 14個 B. 13個 C. 15個 D. 12個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù),關(guān)于x的方程有3個不同的實數(shù)根,則( 。
A. b<﹣2且c>0B. b>﹣2且c<0C. b=﹣2且c=0D. b>﹣2且c=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學旅游局欲將一塊長20百米,寬10百米的矩形空地ABCD建成三星級鄉(xiāng)村旅游園區(qū),園區(qū)內(nèi)有一景觀湖EFG(如圖中陰影部分)以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標系xOy,O為園區(qū)正門,園區(qū)北門P在y正半軸上,且PO=10百米。景觀湖的邊界線符合函數(shù)的模型。
(1)若建設(shè)一條與AB平行的水平通道,將園區(qū)分成面積相等的兩部分,其中湖上的部分建成玻璃棧道,求玻璃棧道的長度。
(2)若在景觀湖邊界線上一點M修建游船碼頭,使得碼頭M到正門O的距離最短,求此時M點的橫坐標。
(3)設(shè)圖中點B為倉庫所在地,現(xiàn)欲在線段OB上確定一點Q建貨物轉(zhuǎn)運站,將貨物從點B經(jīng)Q點直線轉(zhuǎn)運至點P(線路PQ不穿過景觀湖),使貨物轉(zhuǎn)運距離QB+PQ最短,試確定點P的位置。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列判斷錯誤的是
A. 若隨機變量服從正態(tài)分布,則;
B. 若組數(shù)據(jù)的散點都在上,則相關(guān)系數(shù);
C. 若隨機變量服從二項分布: , 則;
D. 是的充分不必要條件;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(Ⅰ)如表所示是某市最近5年個人年平均收入表節(jié)選.求y關(guān)于x的回歸直線方程,并估計第6年該市的個人年平均收入(保留三位有效數(shù)字).
年份x | 1 | 2 | 3 | 4 | 5 |
收入y(千元) | 21 | 24 | 27 | 29 | 31 |
其中,, 附1:= ,=﹣
(Ⅱ)下表是從調(diào)查某行業(yè)個人平均收入與接受專業(yè)培訓時間關(guān)系得到2×2列聯(lián)表:
受培時間一年以上 | 受培時間不足一年 | 總計 | |
收入不低于平均值 | 60 | 20 | |
收入低于平均值 | 10 | 20 | |
總計 | 100 |
完成上表,并回答:能否在犯錯概率不超過0.05的前提下認為“收入與接受培訓時間有關(guān)系”.
附2:
P(K2≥k0) | 0.50 | 0.40 | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 0.455 | 0.708 | 2.706 | 3.841 | 6.635 | 7.879 |
附3:
K2=.(n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某重點中學100位學生在市統(tǒng)考中的理科綜合分數(shù),以, , , , , , 分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求理科綜合分數(shù)的眾數(shù)和中位數(shù);
(3)在理科綜合分數(shù)為, , , 的四組學生中,用分層抽樣的方法抽取11名學生,則理科綜合分數(shù)在的學生中應抽取多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且.其中為常數(shù).
(1)求的值及數(shù)列的通項公式;
(2)記,數(shù)列的前項和為,若不等式對任意恒成立 ,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com