(2012•汕頭一模)定義某種運算S=a⊕b,運算原理如圖所示,則式子(
2
0
x2dx)?(log
3
3
3
)
=
11
11
分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是計算并輸出分段函數(shù)y=
a(b+1),a≥b
b(a+1),a<b
的函數(shù)值.
解答:解:∵運算S=a?b中S的值等于分段函數(shù)y=
a(b+1),a≥b
b(a+1),a<b
的函數(shù)值,
(
2
0
x2dx)?(log
3
3
3
)
=(
1
3
x3
|
2
0
)
?3=
8
3
?3=3(
8
3
+1)=11.
故答案為:11.
點評:根據(jù)流程圖(或偽代碼)寫程序的運行結(jié)果,是算法這一模塊最重要的題型,其處理方法是::①分析流程圖(或偽代碼),從流程圖(或偽代碼)中既要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進行分析管理)⇒②建立數(shù)學模型,根據(jù)第一步分析的結(jié)果,選擇恰當?shù)臄?shù)學模型③解模.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•汕頭一模)(坐標系與參數(shù)方程選做題)過點(2,
π
3
)
且平行于極軸的直線的極坐標方程為
ρsinθ=
3
ρsinθ=
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•汕頭一模)(幾何證明選講選做題)已知PA是⊙O的切線,切點為A,直線PO交⊙O于B、C兩點,AC=2,∠PAB=120°,則⊙O的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•汕頭一模)某商店經(jīng)銷一種洗衣粉,年銷售總量為6000包,每包進價為2.8元,銷售價為3.4元,全年分若干次進貨,每次進貨均為x包,已知每次進貨的運輸勞務(wù)費為62.5元,全年保管費為1.5x元.
(Ⅰ)將該商店經(jīng)銷洗衣粉一年的利潤y(元)元表示為每次進貨量x(包)的函數(shù);
(Ⅱ)為使利潤最大,每次應(yīng)進貨多少包?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•汕頭一模)如圖,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,E為DB的中點.
(Ⅰ)證明:AE⊥BC;
(Ⅱ)若點F是線段BC上的動點,設(shè)平面PFE與平面PBE所成的平面角大小為θ,當θ在[0,
π4
]內(nèi)取值時,直線PF與平面DBC所成的角為α,求tanα的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•汕頭一模)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求證:AF⊥平面CBF;
(2)設(shè)FC的中點為M,求證:OM∥平面DAF;
(3)求三棱錐F-CBE的體積.

查看答案和解析>>

同步練習冊答案