【題目】滿足,若的最大值為,則實(shí)數(shù)________.

【答案】

【解析】

在平面直角坐標(biāo)系內(nèi)畫出不等式組表示的平面區(qū)域,是以點(diǎn),為頂點(diǎn)的三角形區(qū)域,顯然,當(dāng),即時(shí),目標(biāo)函數(shù)在點(diǎn)處取得最大值,則有,解得,不符合題意;當(dāng),即時(shí),目標(biāo)函數(shù)在點(diǎn)處取得最大值,則有,解得,符合題意;當(dāng),即 時(shí),目標(biāo)函數(shù)點(diǎn)處取得最大值,則有,解得,不符合題意,綜上所述,實(shí)數(shù)的值為, 故答案為.

【方法點(diǎn)晴】本題主要考查可行域、含參數(shù)目標(biāo)函數(shù)最優(yōu)解和分類討論思想的應(yīng)用,屬于難題.含參變量的線性規(guī)劃問題是近年來高考命題的熱點(diǎn),由于參數(shù)的引入,提高了思維的技巧、增加了解題的難度, 此類問題的存在增加了探索問題的動(dòng)態(tài)性和開放性,此類問題一般從目標(biāo)函數(shù)的結(jié)論入手,對(duì)目標(biāo)函數(shù)變化過程進(jìn)行詳細(xì)分析,對(duì)變化過程中的相關(guān)量的準(zhǔn)確定位,是求最優(yōu)解的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對(duì)任意實(shí)數(shù)xy恒有,當(dāng)x>0時(shí),f(x)<0,且.

(1)判斷的奇偶性;

(2)在區(qū)間[-3,3]上的最大值;

(3)對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某良種培育基地正在培育一種小麥新品種A,將其與原有的一個(gè)優(yōu)良品種B進(jìn)行對(duì)照試驗(yàn),兩種小麥各種植了24畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下:

品種A:357,359,367368,375388,392,399,400,405412,414,415421,423423,427,430,430434,443445,451454

品種B363,371,374,383,385,386,391,392394,395397,397400,401,401403,406,407,410,412415,416,422,430

1)畫出莖葉圖.

2)用莖葉圖處理現(xiàn)有的數(shù)據(jù),有什么優(yōu)點(diǎn)?

3)通過觀察莖葉圖,對(duì)品種AB的畝產(chǎn)量及其穩(wěn)定性進(jìn)行比較,寫出統(tǒng)計(jì)結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>,且對(duì)任意,,且當(dāng)時(shí).

1)證明:是奇函數(shù);

2)證明:上是減函數(shù);

3)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)若不等式的解集為,求的值;

2)若,求的最小值.

3)若 求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,四邊形

為矩形,平面平面.

I)求證:平面;

II)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,

試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體QPABCD為一簡(jiǎn)單組合體,在底面ABCD中,∠DAB=60°,ADDC,ABBC,QD⊥平面ABCD,PAQD,PA=1,ADABQD=2.

(1)求證:平面PAB⊥平面QBC;

(2)求該組合體QPABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面PAC⊥平面ABC,點(diǎn)E、F、O分別為線段PA、PBAC的中點(diǎn),點(diǎn)G是線段CO的中點(diǎn),ABBCAC4,PAPC2.求證:

1PA⊥平面EBO

2FG∥平面EBO

查看答案和解析>>

同步練習(xí)冊(cè)答案