使y=sin xax在R上是增函數(shù)的a的取值范圍為________.
[1,+∞)
y′=cos xa≥0,∴a≥-cos x在R上恒成立,又cos x∈[-1,1],∴a≥1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分12分)已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為減函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一矩形鐵皮的長(zhǎng)為8 cm,寬為5 cm,在四個(gè)角上截去四個(gè)相同的小正方形,制成一個(gè)無蓋的小盒子,問小正方形的邊長(zhǎng)為多少時(shí),盒子容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中,
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)討論的單調(diào)性;
(3)若有兩個(gè)極值點(diǎn),記過點(diǎn)的直線的斜率為,問是否存在,使得?若存在,求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)證明:;
(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2-mlnx+(m-1)x,當(dāng)m≤0時(shí),試討論函數(shù)f(x)的單調(diào)性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)的定義域是R,f(0)=2,對(duì)任意x∈R,f(x)+f′(x)>1,則不等式ex·f(x)>ex+1的解集為(  )
A.{x|x>0}B.{x|x<0}
C.{x|x<-1或x>1}D.{x|x<-1或0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=x3ax2bx+1的導(dǎo)數(shù)f′(x)滿足f′(1)=
2a,f′(2)=-b,其中a,b∈R.
①求曲線yf(x)在點(diǎn)(1,f(1))處的切線方程;②設(shè)g(x)=f′(x)ex,求g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=-x3+x2+2ax.
(1)若f(x)在(,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍.
(2)當(dāng)0<a<2時(shí),f(x)在[1,4]上的最小值為-,求f(x)在該區(qū)間上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案