設(shè),(),曲線在點處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值。

(Ⅰ) (Ⅱ)極大值3

解析試題分析:
解:(Ⅰ)
………………………………………………………………2分
由于曲線在點處的切線垂直于軸,故該切線斜率為0,即
,…………………………………………………………………………5分
…………………………………………………………………………………6分
(Ⅱ)由(Ⅰ)知,,
上為增函數(shù);…………………………9分
,故上為減函數(shù);…………………………12分
處取得極大值!13分
考點:利用函數(shù)導(dǎo)數(shù)求切線斜率,判定單調(diào)性,求極值最值
點評:要求學(xué)生掌握常見函數(shù)的求導(dǎo)公式及導(dǎo)數(shù)與單調(diào)性的關(guān)系

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分18分)已知函數(shù),
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在)上存在一點,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分) 已知函數(shù),函數(shù)
(I)當(dāng)時,求函數(shù)的表達式;
(II)若,且函數(shù)上的最小值是2 ,求的值;
(III)對于(II)中所求的a值,若函數(shù),恰有三個零點,求b的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知:,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是實數(shù),函數(shù)。
(1)若,求的值及曲線在點處的切線方程;
(2)求在區(qū)間上的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù)的圖象過點,且在點處的切線方程為
(Ⅰ)求函數(shù)的解析式;(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題14分)
設(shè)函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個相異的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
一列火車在平直的鐵軌上行駛,由于遇到緊急情況,火車以速度(單位:m/s)緊急剎車至停止。求:
(I)從開始緊急剎車到火車完全停止所經(jīng)過的時間;
(II)緊急剎車后火車運行的路程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)函數(shù) 
(1)當(dāng)時,求函數(shù)的最大值;
(2)令,()其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案