已知函數(shù),其中常數(shù) .
(1)當(dāng)時(shí),求函數(shù)的極大值;
(2)試討論在區(qū)間上的單調(diào)性;
(3)當(dāng)時(shí),曲線上總存在相異兩點(diǎn),
,使得曲線在點(diǎn)處的切線互相平行,求的取值范圍.

(Ⅰ)(2)當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增. 當(dāng)時(shí),上單調(diào)遞減,當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增(3)

解析試題分析:(1) 當(dāng)時(shí),
,當(dāng)時(shí), ;當(dāng)時(shí), ,
上單調(diào)遞減,在上單調(diào)遞增,故極大值=

(2)
當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增.
當(dāng)時(shí),上單調(diào)遞減
當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增.
(3)由題意,可得()

恒成立
上單調(diào)遞增,
,從而的取值范圍是。
考點(diǎn):利用導(dǎo)數(shù)求函數(shù)最值,單調(diào)區(qū)間及導(dǎo)數(shù)的幾何意義
點(diǎn)評:解本題的注意事項(xiàng):求單調(diào)區(qū)間時(shí)需分情況討論,在解決恒成立問題時(shí)常轉(zhuǎn)化為求函數(shù)最值問題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)
已知函數(shù),設(shè)曲線y=在與x軸交點(diǎn)處的切線為y=4x-12,的導(dǎo)函數(shù),且滿足
(1)求
(2)設(shè),求函數(shù)g(x)在[0,m]上的最大值。
(3)設(shè),若對一切,不等式恒成立,求實(shí)數(shù)t的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
函數(shù),過曲線上的點(diǎn)的切線方程為
(Ⅰ)若時(shí)有極值,求的表達(dá)式;
(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù) 
(1)若,
①求的值;
的最小值。
(參考數(shù)據(jù)
(2) 當(dāng)上是單調(diào)函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)已知在x=2時(shí)有極大值6,在x=1時(shí)有極小值.
⑴ 求的值;
⑵ 求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)為奇函數(shù),a為常數(shù)。
(1)求a的值;
(2)證明在區(qū)間上為增函數(shù);
(3)若對于區(qū)間上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)m  的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過點(diǎn)的切線方程;
(3)對一切的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
(Ⅰ)求的值;
(Ⅱ)求的極值點(diǎn);
(Ⅲ)對定義域內(nèi)任意一個(gè),不等式是否恒成立,若成立,請證明;若不成立,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)).
①當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
②設(shè)的兩個(gè)極值點(diǎn),的一個(gè)零點(diǎn).證明:存在實(shí)數(shù),使得按某種順序排列后構(gòu)成等差數(shù)列,并求.

查看答案和解析>>

同步練習(xí)冊答案