分析 (1)利用離心率為$\sqrt{3}$,結合c2=a2+6,可求a,c的值,從而可求雙曲線方程,即可求得漸近線方程;
(2)設A(x1,y1),B(x2,y2),AB的中點M(x,y),利用2|AB|=5|F1F2|,建立方程,根據(jù)A、B分別為l1、l2上的點,化簡可得軌跡方程及對應的曲線.
解答 解:(1)∵e=$\sqrt{3}$,∴c2=3a2,∵c2=a2+6,∴a=$\sqrt{3}$,c=3.
∴雙曲線方程為$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{6}$=1,漸近線方程為y=±$\frac{\sqrt{2}}{2}$x.
(2)設A(x1,y1),B(x2,y2),AB的中點M(x,y),
∵2|AB|=5|F1F2|,∴|AB|=$\frac{5}{2}$|F1F2|=$\frac{5}{2}$×2c=15,∴(x1-x2)2+(y1-y2)2=225,
∵y1=$\frac{\sqrt{2}}{2}$x1,y2=-$\frac{\sqrt{2}}{2}$x2,2x=x1+x2,2y=y1+y2,
∴y1+y2=$\frac{\sqrt{2}}{2}$(x1-x2),y1-y2=$\frac{\sqrt{2}}{2}$(x1+x2),
∴2×(2y)2+$\frac{1}{2}$×(2x)2=225,
∴$\frac{{y}^{2}}{\frac{225}{8}}+\frac{{x}^{2}}{\frac{225}{2}}$=1,對應的曲線為橢圓.
點評 本題考查軌跡方程的求解,考查雙曲線的幾何性質,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c<b<a | B. | a<c<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 3+2$\sqrt{2}$ | C. | 3-2$\sqrt{2}$ | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 3 | D. | -1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com