【題目】已知橢圓的左右焦點(diǎn)分別為,,該橢圓與軸正半軸交于點(diǎn),且是邊長(zhǎng)為的等邊三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)任作一直線交橢圓于兩點(diǎn),平面上有一動(dòng)點(diǎn),設(shè)直線,的斜率分別為,,,且滿(mǎn)足,求動(dòng)點(diǎn)的軌跡方程.

【答案】12)點(diǎn)的軌跡的方程為

【解析】

(1)根據(jù)焦點(diǎn),得到 的關(guān)系求橢圓的方程.

(2)當(dāng)過(guò)點(diǎn)的直線斜率存在時(shí),設(shè)直線方程為,與橢圓方程聯(lián)立,得,因?yàn)橹本,,的斜率分別為,,,且滿(mǎn)足, 所以有,再利用韋達(dá)理化簡(jiǎn)求解.注意斜率不存在的情況的分析.

(1)因?yàn)?/span>是邊長(zhǎng)為的等邊三角形,

所以 ,

所以橢圓標(biāo)準(zhǔn)方程為.

(2)當(dāng)過(guò)點(diǎn)的直線斜率存在時(shí),設(shè)直線方程為,

設(shè),,,

聯(lián)立方程,

由韋達(dá)定理得,

,

因?yàn)?/span>

所以,

所以,

所以(舍去),

②當(dāng)過(guò)點(diǎn)的直線斜率不存在時(shí),

即為,此時(shí) ,

可知直線上任意一點(diǎn)亦滿(mǎn)足條件.

所以動(dòng)點(diǎn)的軌跡的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,,平面,點(diǎn)在棱.

1)求證:平面平面;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為F,過(guò)點(diǎn)的直線lE交于AB兩點(diǎn).當(dāng)l過(guò)點(diǎn)F時(shí),直線l的斜率為,當(dāng)l的斜率不存在時(shí),.

1)求橢圓E的方程.

2)以AB為直徑的圓是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若曲線交于,兩點(diǎn),,的中點(diǎn)為,點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,底面是菱形,,交于點(diǎn),底面的中點(diǎn),.

(1)求證: 平面;

(2)求異面直線所成角的余弦值;

(3)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個(gè)小時(shí)抽取一件產(chǎn)品并對(duì)其某個(gè)質(zhì)量指標(biāo)進(jìn)行檢測(cè),一共抽取了件產(chǎn)品,并得到如下統(tǒng)計(jì)表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見(jiàn)下表.

質(zhì)量指標(biāo)

頻數(shù)

一年內(nèi)所需維護(hù)次數(shù)

(1)以每個(gè)區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計(jì)該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));

(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再?gòu)?/span>件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;

(3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項(xiàng)服務(wù):若消費(fèi)者在購(gòu)買(mǎi)該廠產(chǎn)品時(shí)每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購(gòu)買(mǎi)支出和一年的維護(hù)支出之和稱(chēng)為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購(gòu)買(mǎi)該服務(wù),或者每件都不購(gòu)買(mǎi)該服務(wù),就這兩種情況分別計(jì)算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購(gòu)買(mǎi)每件產(chǎn)品時(shí)是否值得購(gòu)買(mǎi)這項(xiàng)維護(hù)服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠BAD60°,PAPDAD2,點(diǎn)M在線段PC上,且PM2MC,NAD的中點(diǎn).

1)求證:AD⊥平面PNB;

2)若平面PAD⊥平面ABCD,求三棱錐PNBM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車(chē)的數(shù)量與日俱增.由于該小區(qū)建成時(shí)間較早,沒(méi)有配套建造地下停車(chē)場(chǎng),小區(qū)內(nèi)無(wú)序停放的車(chē)輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年小區(qū)登記在冊(cè)的私家車(chē)數(shù)量(累計(jì)值,如124表示2016年小區(qū)登記在冊(cè)的所有車(chē)輛數(shù),其余意義相同),得到如下數(shù)據(jù):

編號(hào)

1

2

3

4

5

年份

2014

2015

2016

2017

2018

數(shù)量(單位:輛)

34

95

124

181

216

(1)若私家車(chē)的數(shù)量與年份編號(hào)滿(mǎn)足線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)2020年該小區(qū)的私家車(chē)數(shù)量;

(2)小區(qū)于2018年底完成了基礎(chǔ)設(shè)施改造,劃設(shè)了120個(gè)停車(chē)位,為解決小區(qū)車(chē)輛亂停亂放的問(wèn)題,加強(qiáng)小區(qū)管理,物業(yè)公司決定禁止無(wú)車(chē)位的車(chē)輛進(jìn)入小區(qū),由于車(chē)位有限,物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競(jìng)拍的方式將車(chē)位對(duì)業(yè)主出租,租期一年,競(jìng)拍方案如下:

①截至2018年已登記在冊(cè)的私家車(chē)業(yè)主擁有競(jìng)拍資格;

②每車(chē)至多申請(qǐng)一個(gè)車(chē)位,由車(chē)主在競(jìng)拍網(wǎng)站上提出申請(qǐng)并給出自己的報(bào)價(jià);

③根據(jù)物價(jià)部門(mén)的規(guī)定,競(jìng)價(jià)不得超過(guò)1200元;

④申請(qǐng)階段截止后,將所有申請(qǐng)的業(yè)主報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;

⑤若最后出現(xiàn)并列的報(bào)價(jià),則以提出申請(qǐng)的時(shí)間在前的業(yè)主成交,為預(yù)測(cè)本:次競(jìng)拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競(jìng)拍資格的40位業(yè)主進(jìn)行競(jìng)拍意向的調(diào)查,統(tǒng)計(jì)了他們的擬報(bào)競(jìng)價(jià),得到如下頻率分布直方圖:

(。┣笏槿〉臉I(yè)主中有意向競(jìng)拍報(bào)價(jià)不低于1000元的人數(shù);

(ⅱ)如果所有符合條件的車(chē)主均參與競(jìng)拍,利用樣木估計(jì)總體的思想,請(qǐng)你據(jù)此預(yù)測(cè)至少需要報(bào)價(jià)多少元才能競(jìng)拍車(chē)位成功?(精確到整數(shù))

參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)習(xí)軟件以數(shù)學(xué)知識(shí)為題目設(shè)置了一項(xiàng)闖關(guān)游戲,共有15關(guān),每過(guò)一關(guān)可以得到一定的積分,現(xiàn)有三種積分方案供闖關(guān)者選擇.方案一:每闖過(guò)一關(guān)均可獲得40積分;方案二:闖過(guò)第一關(guān)可獲得5積分,后面每關(guān)的積分都比前一關(guān)多5;方案三:闖過(guò)第一關(guān)可獲得0.5積分,后面每關(guān)的積分都是前一關(guān)積分的2.若某關(guān)闖關(guān)失敗則停止游戲,最終積分為闖過(guò)的各關(guān)的積分之和,設(shè)三種方案闖過(guò)n)關(guān)后的積分之和分別為,要求闖關(guān)者在開(kāi)始前要選擇積分方案.

1)求出的表達(dá)式;

2)為獲得盡量多的積分,如果你是一個(gè)闖關(guān)者,試分析這幾種積分方案該如何選擇?小明通過(guò)試驗(yàn)后覺(jué)得自己至少能闖過(guò)12關(guān),則他應(yīng)該選擇第幾種積分方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案