9.在△ABC中,BC=$\sqrt{3}$,AC=1,且B=$\frac{π}{6}$,則A=$\frac{π}{3}$或$\frac{2π}{3}$..

分析 利用正弦定理即可得出.

解答 解:由正弦定理可得:$\frac{\sqrt{3}}{sinA}=\frac{1}{sin\frac{π}{6}}$,
可得:sinA=$\frac{\sqrt{3}}{2}$,A∈(0,π),a>b,因此A可能為鈍角.
∴A=$\frac{π}{3}$或$\frac{2π}{3}$.
故答案為:$\frac{π}{3}$或$\frac{2π}{3}$.

點(diǎn)評(píng) 本題考查了正弦定理、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)點(diǎn)F為橢圓$C:\frac{x^2}{4m}+\frac{y^2}{3m}=1(m>0)$的左焦點(diǎn),直線y=x被橢圓C截得弦長(zhǎng)為$\frac{{4\sqrt{42}}}{7}$.
(1)求橢圓C的方程;
(2)圓$P:{(x+\frac{{4\sqrt{3}}}{7})^2}+{(y-\frac{{3\sqrt{3}}}{7})^2}={r^2}(r>0)$與橢圓C交于A,B兩點(diǎn),M為線段AB上任意一點(diǎn),直線FM交橢圓C于P,Q兩點(diǎn)AB為圓P的直徑,且直線FM的斜率大于1,求|PF|•|QF|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知G點(diǎn)為△ABC的重心,設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c且滿足$\overrightarrow{BG}$⊥$\overrightarrow{CG}$,若$\frac{a^2}{cosA}=λbc$則實(shí)數(shù)λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=1,BB1=1,P是AB的中點(diǎn),則異面直線BC1與PD所成角等于( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{\sqrt{|x|}}{{e}^{x}}$(x∈R),若關(guān)于x的方程f2(x)-$\frac{1}{2}$mf(x)+$\frac{1}{2}$m-1=0恰好有4個(gè)不相等的實(shí)根,則m的取值范圍是( 。
A.(2,$\frac{\sqrt{2e}}{e}$+2)B.(1,$\frac{\sqrt{2e}}{e}$+1)C.(1,$\frac{\sqrt{2e}}{2e}$+1)D.(2,$\frac{\sqrt{2e}}{2e}$+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a+\overrightarrow b=({1,-3}),\overrightarrow a-\overrightarrow b=({3,7})$,則$\overrightarrow a•\overrightarrow b$=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}是等差數(shù)列,若$\frac{{{a_{12}}}}{{{a_{11}}}}<-1$,且它的前n項(xiàng)和sn有最大值,則使得sn>0的n的最大值為(  )
A.11B.12C.21D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果二面角α-l-β內(nèi)部一點(diǎn)P到α,β,l的距離分別為1,1,$\sqrt{2}$,該二面角的大小為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題“若x≥1,則2x+1≥3”的逆否命題為(  )
A.若2x+1≥3,則x≥1B.若2x+1<3,則x<1C.若x≥1,則2x+1<3D.若x<1,則2x+1≥3

查看答案和解析>>

同步練習(xí)冊(cè)答案