函數(shù)f(x)的值域?yàn)?/span>________

 

(,2)

【解析】當(dāng)x≥1時(shí),0,f(x)≤0;當(dāng)x<1時(shí)0<2x<21,0<f(x)<2,所以函數(shù)f(x)的值域?yàn)?/span>(,2)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第6課時(shí)練習(xí)卷(解析版) 題型:填空題

若函數(shù)f(x)ax23x4在區(qū)間(6)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

判斷下列函數(shù)的奇偶性:

(1)f(x)x4x;

(2)f(x)

(3)f(x)lg(x)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)2x,x(01]

(1)當(dāng)a=-1時(shí),求函數(shù)yf(x)的值域;

(2)若函數(shù)yf(x)x∈(0,1]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第2課時(shí)練習(xí)卷(解析版) 題型:解答題

已知二次函數(shù)f(x)ax2bx(ab為常數(shù),a≠0)滿(mǎn)足條件:f(x1)f(3x),且方程f(x)2x有等根.

(1)f(x)的解析式;

(2)是否存在實(shí)數(shù)m、n(mn),使f(x)定義域和值域分別為[m,n][4m,4n]?如果存在,求出m、n的值;如果不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第2課時(shí)練習(xí)卷(解析版) 題型:解答題

求下列函數(shù)的值域:

(1) f(x)

(2) g(x);

(3) ylog3xlogx31.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第2課時(shí)練習(xí)卷(解析版) 題型:填空題

函數(shù)f(x)的值域?yàn)?/span>____________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時(shí)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)lnxax2(2a)x.

(1)討論f(x)的單調(diào)性;

(2)設(shè)a>0,證明:當(dāng)0<x<時(shí)f>f;

(3)若函數(shù)yf(x)的圖象與x軸交于AB兩點(diǎn),線(xiàn)段AB中點(diǎn)的橫坐標(biāo)為x0證明:0.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時(shí)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)(ax2x)ex,其中e是自然數(shù)的底數(shù)aR.

(1)當(dāng)a<0時(shí),解不等式f(x)>0;

(2)f(x)[1,1]上是單調(diào)函數(shù)a的取值范圍;

(3)當(dāng)a0時(shí)求整數(shù)k的所有值,使方程f(x)x2[k,k1]上有解.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案