【題目】若(x2﹣a)(x+ 10的展開(kāi)式中x6的系數(shù)為30,則 (3x2+1)dx=

【答案】10
【解析】解:(x+ 10展開(kāi)式的通項(xiàng)公式為: Tr+1= x10rxr= x102r
令10﹣2r=4,解得r=3,所以x4項(xiàng)的系數(shù)為
令10﹣2r=6,解得r=2,所以x6項(xiàng)的系數(shù)為 ;
所以(x2﹣a)(x+ 10的展開(kāi)式中x6的系數(shù)為: ﹣a =30,
解得a=2.
(3x2+1)dx= =10.
所以答案是10.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用定積分的概念的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握定積分的值是一個(gè)常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個(gè)基本步驟:①分割;②近似代替;③求和;④取極限.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(3,﹣1),| |= , =﹣5, =x +(1﹣x)
(Ⅰ)若 ,求實(shí)數(shù)x的值;
(Ⅱ)當(dāng)| |取最小值時(shí),求 的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為菱形,∠ABC=60°,E是BC中點(diǎn),M是PD上的中點(diǎn),F(xiàn)是PC上的動(dòng)點(diǎn). (Ⅰ)求證:平面AEF⊥平面PAD
(Ⅱ)直線EM與平面PAD所成角的正切值為 ,當(dāng)F是PC中點(diǎn)時(shí),求二面角C﹣AF﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)是二次函數(shù),若f(x)ex的一個(gè)極值點(diǎn)為x=﹣1,則下列圖象不可能為f(x)圖象的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2ln(x+1)+ ﹣(m+1)x有且只有一個(gè)極值. (Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)若f(x1)=f(x2)(x1≠x2),求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已成橢圓 的離心率為 .其右頂點(diǎn)與上頂點(diǎn)的距離為 ,過(guò)點(diǎn) 的直線 與橢圓 相交于 兩點(diǎn).
(1)求橢圓 的方程;
(2)設(shè) 中點(diǎn),且 點(diǎn)的坐標(biāo)為 ,當(dāng) 時(shí),求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)當(dāng)a=0時(shí),求f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)是否存在實(shí)數(shù)a,當(dāng)0<x≤2時(shí),函數(shù)f(x)圖象上的點(diǎn)都在 所表示的平面區(qū)域(含邊界)?若存在,求出a的值組成的集合;否則說(shuō)明理由;
(3)若f(x)有兩個(gè)不同的極值點(diǎn)m,n(m>n),求過(guò)兩點(diǎn)M(m,f(m)),N(n,f(n))的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生小王在學(xué)習(xí)完解三角形的相關(guān)知識(shí)后,用所學(xué)知識(shí)測(cè)量高為AB 的煙囪的高度.先取與煙囪底部B在同一水平面內(nèi)的兩個(gè)觀測(cè)點(diǎn)C,D,測(cè)得∠BDC=60°,∠BCD=75°,CD=40米,并在點(diǎn)C處的正上方E處觀測(cè)頂部 A的仰角為30°,且CE=1米,則煙囪高 AB=米.

查看答案和解析>>

同步練習(xí)冊(cè)答案