.(本題滿分10分) 選修4—4:坐標系與參數(shù)方程
已知曲線C1的極坐標方程為,曲線C2的極坐標方程為,曲線C1,C2相交于點A、B.
(1)分別將曲線C1,C2的極坐標方程化為直角坐標方程;
(2)求弦AB的長.

(1)由于直線過極點,傾斜角為45°,∴C2的方程為y=x,………2分
在r=cosq兩邊同乘以r得r2=rcosq,
由互化公式可知C1的直角坐標方程為x2+y2=6x.            …………4分
(2)圓心(3,0)到直線y=x的距離d=,半徑r="3,"             …………6分
由平面幾何知識知,.                    …………8分
所以弦長AB=3.                                    …………10分

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

 17.本題滿分10分已知函數(shù)的圖象在y軸上的截距為,相鄰的兩個最值點是(1)求函數(shù);(2)設(shè),問將函數(shù)的圖像經(jīng)過怎樣的變換可以得到 的圖像?(3)畫出函數(shù)在區(qū)間上的簡圖.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆浙江省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分10分)

(Ⅰ)設(shè),求證:;

(Ⅱ)設(shè),求證:三數(shù),中至少有一個不小于2.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆河南省高二上學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分10分)

如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點B作B1C的垂線交側(cè)棱CC1于點E,交B1C于點F,

⑴求證:A1C⊥平面BDE;

⑵求A1B與平面BDE所成角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省揚州市寶應(yīng)縣高三下學期期初測試數(shù)學試卷 題型:解答題

(本題滿分10分)

如圖,已知正三棱柱的所有棱長都為2,為棱的中點,

(1)求證:平面

(2)求二面角的余弦值大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年遼寧省高二上學期期末考試數(shù)學理卷 題型:解答題

(本題滿分10分)

如圖,要計算西湖岸邊兩景點的距離,由于地形的限制,需要在岸上選取兩點,現(xiàn)測得,,, ,,求兩景點的距離(精確到0.1km).參考數(shù)據(jù):  

 

 

查看答案和解析>>

同步練習冊答案