已知函數(shù)f(x)=
2x,x>0
x+1,x≤0
,若f(a)=-2,則實(shí)數(shù)a的值等于( 。
A、1B、-1C、3D、-3
考點(diǎn):指數(shù)式與對(duì)數(shù)式的互化,有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知分段列出指數(shù)方程和一元一次方程,求解得答案.
解答: 解:由f(x)=
2x,x>0
x+1,x≤0
,且f(a)=-2,得:
a>0
2a=-2
①,或
a≤0
a+1=-2
②.
解①得:a∈∅;解②得:a=-3.
∴實(shí)數(shù)a的值為-3.
故選:D.
點(diǎn)評(píng):本題考查了分段函數(shù),考查了指數(shù)方程與一次方程的解法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
n
a1+a2+…+an
=
1
2n+1

(1)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,求an與Sn;
(2)若bn=
16
(an+1)(an+5)
,設(shè)函數(shù)f(x)=x+
1
2
-
n
i-1
bi,是否存在最大的實(shí)數(shù)λ,當(dāng)x≤λ時(shí),對(duì)一切n∈N*都有f(x)≤0成立?若存在求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,則“(a-b)a2<0”是“a<b”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點(diǎn)A(-2,-1),B(x,2),C(1,0)共線,則x為( 。
A、7B、-5C、3D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校參加舞蹈社團(tuán)的學(xué)生中,高一年級(jí)有40名,高二年級(jí)有30名,現(xiàn)用分層抽樣的方法在這70名學(xué)生中抽取一個(gè)樣本,已知在高一年級(jí)的學(xué)生中抽取了8名,則在高二年級(jí)的學(xué)生中應(yīng)抽取的人數(shù)為( 。
A、12B、10C、8D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log2(-x)是( 。
A、在區(qū)間(-∞,0)上的增函數(shù)
B、在區(qū)間(-∞,0)上的減函數(shù)
C、在區(qū)間(0,+∞)上的增函數(shù)
D、在區(qū)間(0,+∞)上的減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過兩點(diǎn)A(4,y),B(-2,-3)的直線的傾斜角是45°,則y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={3k+2|0≤k≤667,k∈Z}.若在A中任取n個(gè)數(shù),都能從中找出兩個(gè)不同的數(shù)a,b,使a+b=2104,則n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-lnx.
(1)求函數(shù)的單調(diào)區(qū)間與最值;
(2)若方程f(x)-k=0在區(qū)間[
1
e
,e]內(nèi)有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=1時(shí),函數(shù)g(x)=1-
f(x)
x2
,求證:
ln2
24
+
ln3
34
+…+
lnn
n4
1
2e
.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案