15.已知函數(shù)f(x)=sinx+cosx,且f′(x)=3f(x),則tan2x的值是-$\frac{4}{3}$.

分析 根據(jù)導(dǎo)數(shù)的運算法則和兩角和的正切公式計算即可.

解答 解:f(x)=sinx+cosx,
∴f′(x)=cosx-sinx,
∵f′(x)=3f(x),
∴cosx-sinx=3sinx+3cosx,
∴tanx=-$\frac{1}{2}$,
∴tan2x=$\frac{2tanx}{1-ta{n}^{2}x}$=$\frac{2×(-\frac{1}{2})}{1-(-\frac{1}{2})^{2}}$=-$\frac{4}{3}$,
故答案為:-$\frac{4}{3}$.

點評 本題考查了導(dǎo)數(shù)的運算法則和兩角和的正切公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l:y=-ex+a與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b≥0)有一個公共點M,e為橢圓的離心率,直線l與x軸和y軸的交點分別為A、B,且$\overrightarrow{AM}$=λ$\overrightarrow{AB}$.
(Ⅰ)若點A($\frac{4\sqrt{3}}{3}$,0)、B(0,2),求橢圓方程;
(II)若e=$\frac{1}{3}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.早上從起床到出門需要洗臉刷牙(5min)、刷水壺(2min)、燒水(8min)、泡面(3min)、吃飯(10min)、聽廣播(8min)幾個步驟.從下列選項中選出最好的一種流程(  )
A.1.洗臉刷牙、2.刷水壺、3.燒水、4.泡面、5.吃飯、6.聽廣播
B.1.刷水壺、2.燒水同時洗臉刷牙、3.泡面、4.吃飯、5.聽廣播
C.1.刷水壺、2.燒水同時洗臉刷牙、3.泡面、4.吃飯同時聽廣播
D.1.吃飯同時聽廣播、2.泡面、3.燒水同時洗臉刷牙、4.刷水壺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點D是△ABC的邊BC的中點,G為△AOB的重心,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,則$\overrightarrow{AG}$=x$\overrightarrow{a}$+y$\overrightarrow$,則x+y=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下面哪些變量不是相關(guān)關(guān)系(  )
A.正方形的邊長與面積之間的關(guān)系
B.水稻產(chǎn)量與施肥量之間的關(guān)系
C.降雪量與交通事故的發(fā)生率之間的關(guān)系
D.人的身高與體重

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.閱讀下文,然后畫出該章的知識結(jié)構(gòu)圖.
推理與證明這一章介紹了推理與證明這兩個知識點.推理這節(jié)包括合情推理和演繹推理;證明這節(jié)包括直接證明和間接證明.合情推理中有兩種常用推理:歸納推理和類比推理.直接證明有綜合法和分析法;間接證明通常用反證法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在梯形ABCD中,BC∥AD,AB⊥BC,AB=BC=1,PA=AD=2,PA⊥平面ABCD,E為PD中點.
(Ⅰ)求證:CE∥平面PAB;
(Ⅱ)求直線CE與平面PAD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+lnx-ax.
(1)當a=3時,求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在(0,1)上是增函數(shù),求a得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某商場在店慶日進行抽獎促銷活動,當日在該店消費的顧客可參加一次抽獎.抽獎箱中有大小完全相同的4個小球,分別標有字“生”“意”“興”“隆”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“隆”字球,則停止取球.獲獎規(guī)則如下:取到標有“生”“意”“興”“隆”字的球則為中獎.
(Ⅰ)求獲得中獎的概率;
(Ⅱ)設(shè)摸球次數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案