精英家教網 > 高中數學 > 題目詳情
16.若焦點在x軸上的橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1的離心率為$\frac{1}{2}$,則m=3.

分析 由已知可得a2,b2的值,求得c2=4-m,結合橢圓離心率列式求得m值.

解答 解:由已知a2=4,b2=m,
則c2=4-m,
∴${e}^{2}=\frac{{c}^{2}}{{a}^{2}}=\frac{4-m}{4}=\frac{1}{4}$,解得m=3.
故答案為:3.

點評 本題考查橢圓的簡單性質,考查橢圓隱含條件及離心率的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

6.已知函數f(x)=2sin2x-1,若將其圖象沿x軸向右平移a個單位(a>0),所得圖象關于原點對稱,則實數a的最小值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,BC=1,AB=2,$PC=PD=\sqrt{2}$,E為PA中點.
(Ⅰ)求證:PC∥平面BED;
(Ⅱ)求二面角A-PC-D的余弦值;
(Ⅲ)在棱PC上是否存在點M,使得BM⊥AC?若存在,求$\frac{PM}{PC}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.在公差為d的等差數列{an}中,“d>1”是“{an}是遞增數列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,|F1F2|=2$\sqrt{5}$,點P在橢圓上,tan∠PF2F1=2,且△PF1F2的面積為4.
(1)求橢圓的方程;
(2)點M是橢圓上任意一點,A1、A2分別是橢圓的左、右頂點,直線MA1,MA2與直線x=$\frac{3\sqrt{5}}{2}$分別交于E,F兩點,試證:以EF為直徑的圓交x軸于定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=$\left\{\begin{array}{l}{2-2x,0≤x<1}\\{lnx,1≤x≤e}\end{array}\right.$.
(1)求f(f($\sqrt{e}$));
(2)若x0滿足f(f(x0))=x0,且f(x0)≠x0,則稱x0為f(x)的二階不動點,求函數f(x)的二階不動點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{12}$=1的離心率為( 。
A.2$\sqrt{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.一直角梯形的直觀圖是一個如圖所示的梯形,且OA′=2,B′C′=OC′=1,則該直角梯形的面積為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知函數$f(x)=x+\frac{m}{x}(m∈R)$,且該函數的圖象過點(1,5).
(Ⅰ)求f(x)的解析式,并判斷f(x)的奇偶性;
(Ⅱ)判斷f(x)在區(qū)間(0,2)上的單調性,并用函數單調性的定義證明你的結論.

查看答案和解析>>

同步練習冊答案