【題目】如圖,在斜三棱柱中,AB=1,AC=2,,ABAC底面ABC.

1)求直線與平面所成角的正弦值;

2)求平面與平面所成銳二面角的余弦值.

【答案】1.2

【解析】

1)以A為原點(diǎn),分別為x軸,y軸的正方向建立空間直角坐標(biāo)系,求得向量的坐標(biāo),再根據(jù)底面,得到,又,由線面垂直的判定定理得到平面,從而是平面的一個(gè)法向量,然后由求解.

2)由(1)知是平面的一個(gè)法向量,再求得平面的一個(gè)法向量,然后由求解.

1)以A為原點(diǎn),分別為x軸,y軸的正方向建立如圖所示的空間直角坐標(biāo)系,

,,,,

,

底面,底面,

又∵,

平面平面,

平面,

是平面的一個(gè)法向量,

,

故所求直線與平面所成角的正弦值為

2,,

設(shè)為平面的一個(gè)法向量,

,

,得,

得平面的一個(gè)法向量為,

又由(1)得是平面的一個(gè)法向量,

,

故所求面與平面所成銳二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,若是正整數(shù),且,…,則稱為“絕對差數(shù)列”.

1)舉出一個(gè)前5項(xiàng)不為零的“絕對差數(shù)列”(只要求寫出前10項(xiàng));

2)若“絕對差數(shù)列”中,,數(shù)列滿足,,…,分別判斷當(dāng)時(shí),的極限是否存在?如果存在,求出其極限值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售某種活海鮮,根據(jù)以往的銷售情況,按日需量(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500]進(jìn)行分組,得到如圖所示的頻率分布直方圖.這種海鮮經(jīng)銷商進(jìn)價(jià)成本為每公斤20元,當(dāng)天進(jìn)貨當(dāng)天以每公斤30元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫.某海鮮產(chǎn)品經(jīng)銷商某天購進(jìn)了300公斤這種海鮮,設(shè)當(dāng)天利潤為元.

(I)求關(guān)于的函數(shù)關(guān)系式;

(II)結(jié)合直方圖估計(jì)利潤不小于800元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:若對任意的x(0,2]都成立,則[0,2]上是增函數(shù),下列函數(shù)中能說明命題p為假命題的有( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】;②;③為常數(shù))這個(gè)條件中選擇個(gè)條件,補(bǔ)全下列試題后完成解答,設(shè)等差數(shù)列的前項(xiàng)和為,若數(shù)列的各項(xiàng)均為正整數(shù),且滿足公差____________.

1)求數(shù)列的通項(xiàng)公式;

2)令,求數(shù)列的前項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠連續(xù)6天對新研發(fā)的產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組數(shù)據(jù)如下表所示

日期

4月1日

4月2日

4月3日

4月4日

4月5日

4月6日

試銷價(jià)

9

11

10

12

13

14

產(chǎn)品銷量

40

32

29

35

44

(1)試根據(jù)4月2日、3日、4日的三組數(shù)據(jù),求關(guān)于的線性回歸方程,并預(yù)測4月6日的產(chǎn)品銷售量

(2)若選取兩組數(shù)據(jù)確定回歸方程,求選取得兩組數(shù)據(jù)恰好是不相鄰兩天的事件的概率.

參考公式:

其中 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與拋物線相交于兩點(diǎn),與軸交于點(diǎn),且,于點(diǎn).

1)當(dāng)時(shí),求的值;

2)當(dāng)時(shí),求的面積之積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

若曲線處的切線斜率為-2,求該切線的方程;

求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年12月18日上午10時(shí),在人民大會(huì)堂舉行了慶祝改革開放40周年大會(huì).40年眾志成城,40年砥礪奮進(jìn),40年春風(fēng)化雨,中國人民用雙手書寫了國家和民族發(fā)展的壯麗史詩.會(huì)后,央視媒體平臺,收到了來自全國各地的紀(jì)念改革開放40年變化的老照片,并從眾多照片中抽取了100張照片參加“改革開放40年圖片展”,其作者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:

(Ⅰ)求這100位作者年齡的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

(Ⅱ)由頻率分布直方圖可以認(rèn)為,作者年齡X服從正態(tài)分布,其中近似為樣本平

均數(shù),近似為樣本方差

(i)利用該正態(tài)分布,求;

(ii)央視媒體平臺從年齡在的作者中,按照分層抽樣的方法,抽出了7人參加“紀(jì)念改革開放40年圖片展”表彰大會(huì),現(xiàn)要從中選出3人作為代表發(fā)言,設(shè)這3位發(fā)言者的年齡落在區(qū)間的人數(shù)是Y,求變量Y的分布列和數(shù)學(xué)期望.附:,若,則,

查看答案和解析>>

同步練習(xí)冊答案