設(shè)a∈R,試討論關(guān)于x的方程lg(x-1)+lg(3-x)=lg(a-x)的實(shí)根的個(gè)數(shù).

答案:
解析:

  

  


提示:

  

  思想方法小結(jié):本題將函數(shù)與方程思想,數(shù)形結(jié)合思想,分類討論思想,轉(zhuǎn)化與化歸思想有機(jī)地結(jié)合在一起.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函數(shù)f(x)的極值;
(2)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),試求出a關(guān)于b的關(guān)系式(即用a表示b),并確定f(x)的單調(diào)區(qū)間;(提示:應(yīng)注意對a的取值范圍進(jìn)行討論)
(3)在(2)的條件下,設(shè)a>0,函數(shù)g(x)=(a2+14)ex+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省長沙市雅禮中學(xué)高三第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函數(shù)f(x)的極值;
(2)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),試求出a關(guān)于b的關(guān)系式(即用a表示b),并確定f(x)的單調(diào)區(qū)間;(提示:應(yīng)注意對a的取值范圍進(jìn)行討論)
(3)在(2)的條件下,設(shè)a>0,函數(shù)g(x)=(a2+14)ex+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省揭陽市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函數(shù)f(x)的極值;
(2)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),試求出a關(guān)于b的關(guān)系式(即用a表示b),并確定f(x)的單調(diào)區(qū)間;(提示:應(yīng)注意對a的取值范圍進(jìn)行討論)
(3)在(2)的條件下,設(shè)a>0,函數(shù)g(x)=(a2+14)ex+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省揭陽市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函數(shù)f(x)的極值;
(2)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),試求出a關(guān)于b的關(guān)系式(即用a表示b),并確定f(x)的單調(diào)區(qū)間;(提示:應(yīng)注意對a的取值范圍進(jìn)行討論)
(3)在(2)的條件下,設(shè)a>0,函數(shù)g(x)=(a2+14)ex+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案